
Renaud Gaubert <@RenaudWasTaken>, Lead Kubernetes Engineer

May 03, 2018

The Path to GPU as a Service in
Kubernetes

2

RUNNING A GPU APPLICATION
Customers using DL

RHEL 7.3
CUDA 8.0
Driver 375
4x Pascal
Python 2.7

Ubuntu 16.04
CUDA 9.0
Driver 384
4x Volta
Python 3.5

▶ “This framework requires installing 6
dependencies from sources”

▶ “I want to train my model on the cluster
but it’s running RHEL 7”

▶ “Some machines in the cluster have
different NVIDIA hardware & drivers”

▶ “How do I deploy a DL model/application
at scale”

▶ “How do I deploy a fault tolerant inference
service”

DL Application

3

NVIDIA CONTAINER RUNTIME
Enables GPU support in various container runtimes

▶ Integrates Linux container internals
instead of wrapping specific runtimes
(e.g. Docker)

▶ Includes runtime library, headers, CLI
tools

▶ Backward compatibility with
NVIDIA-Docker 1.0

▶ Support new use-cases - HPC, DL,
Graphics

NVML

NVIDIA Driver

CUDAlibnvidia-container

nvidia-container-runtime
Components

OCI Runtime Interface

Containerized
Applications Caffe

PyTorc
h

Tensor
Flow NAMD

CHROM
A

4

Involvement in the Community
▶ February 2017: Involvement in the community discussions

▶ Spring 2017: Face 2 Face meeting

▶ Summer 2017: Design doc merged in
Summer

▶ Kubernetes 1.8: Alpha Feature available

▶ Kubernetes 1.10: Beta Feature available

▶ Spring 2018: Face to Face meeting hosted at
NVIDIA

5

CONTAINER ORCHESTRATION: KUBERNETES

▶ Supports auto scaling, self-healing,
multi-region clusters

▶ Upstream GPU support still beta and
provisioning a GPU cluster can be
challenging

Kubernetes is a portable, extensible open-source platform for managing containerized workloads
and services, that facilitates both declarative configuration and automation

Authentication
Authorization

Admission

Service
Discovery

Intelligent
Scheduling

Self
Healing

Security

Metrics
&

Logging

Container
Runtime

6

KUBERNETES ROADMAP FOR NVIDIA GPUs

> 2018

✓ Experimental support
(1.6 supports one GPU / node)

✓ Manually mount the volumes in
your pod spec

✓ No GPU Monitoring or Health
check

✓ NVIDIA Device Plugin (alpha)
✓ Uses new NVIDIA Container

Runtime

Alpha GPU Support
(--accelerators) Device Plugin system

GPU Enhancements
✓ GPU Health Checks and Monitoring
✓ Heterogeneous GPU Support
✓ Support for MPS
✓ GPU Topology aware
✓ Device Plugin support for GPU

lifecycle management
✓ Representing resources in the cluster

GPU Enhancements

v1.8 – v1.10< v1.7

7

Kubernetes User Perspective

8

Motivations and Opportunity for Growth

▶ In 1.6 - 1.7 Kubernetes had experimental GPU support

▶ 1.6 supports one GPU per node

▶ Manually mount the driver volumes

▶ Fragmented ecosystem for GPU support

▶ No GPU metrics or health checks

9

NVIDIA Device Plugin
▶ In 1.8 we introduced the device plugin system

▶ You deploy a Daemonset in your cluster for it to be GPU aware

▶ Reports to the cluster and setup the GPU resources

▶ Exposes the GPU resource inside your containers

$ kubectl create -f raw.github/.../NVIDIA/.../v1.10/device-plugin.yml

10

GPU Pod

apiVersion: v1

kind: Pod

metadata:

 name: gpu-pod

spec:

 containers:

 - name: digits-container

 image: nvidia/digits:6.0

 resources:

 limits:

 nvidia.com/gpu: 2 # requesting 2 GPUs

11

Updating for GPU Services

Node A Node A Node A

Good luck doing your blue green update!

$ kubectl edit deployment/gpu-deployment

Pod

12

Resiliency for GPU Services

Node A Node B

Data Data

PodNVIDIA Driver

Inference Liveness Probe

NVIDIA Driver

Inference

When deploying an inference service some things are slow:
● Provisioning a GPU instance
● Loading the data

13

Scaling for GPU Services

Load Balancer / Auto scaler / ...

● Scale based on QPS not GPU load
● Use Inter-pod affinity to land on nodes that have your data pod
● Keep some spare nodes

14

Operating a GPU Cluster
In order User queues

Possible Solutions: Use an operator? A custom scheduler?

15

Kubernetes Developer Perspective

16

List Devices

Device Plugin Lifecycle

Node
(Kubelet)

NVIDIA
Device Plugin

Deploys the
Device plugin

Registers Driver install
(optional)

Container Create

Metrics

.

.

.

API
Server

3 GPUs

3 GPUs
1 Unhealthy

3 GPUs

1 2

3

GPU
Crash

17

Initialize Containers

Device Plugin Lifecycle

Node
(Kubelet)

NVIDIA
Device Plugin

Pod Admission

Pod Deleted

.

.

.

Devices and
Node Selection

API Server

Pod Creation

Pod Deletion

18

Zero Downtime Registration

Kubelet

Nvidia device plugin:1.8

gRPC server

/var/lib/kubelet/device-plugins

/var/…/nvidia.com/gpu:1.8.sock

/var/…/nvidia.com/gpu:1.9.sock

/var/…/nvidia.com/gpu-2:1.9.sock

Nvidia device plugin:1.9

gRPC server

Watches

19

Current Challenges
and

Challenges Ahead

20

GPU Monitoring
Upstream Enhancements

Reports basic metrics (GPU utilization, Memory usage)
● Identify badly behaved tasks and unhealthy GPUs
● Detect power inefficiencies
● Identify bottlenecks and throttling

21

Current Challenges

Feature Upstream Enhancements

Heterogeneous Cluster
Support

Manually label nodes with GPU attributes
Taints, Tolerations, …

Specify GPU requirements for your
pod

(Minimum Memory, NVLINK
connection, ECC Enabled, …)

Additional Runtimes
Support

Docker and CRIO were not fully
supported:

● The NVIDIA runtime is used for all
images

● Images that did not request GPUs
might have all GPUs exposed

Full Docker and CRIO support

In Core Kubernetes

22

Feature Enhancements

GPU Sharing ● Support for MPS
● Make use of the full Volta capabilities for inference services
● How is this exposed to the user?

GPU Topology Aware ● Users are exposed to more and more complex topologies
● Make sure that users get the best performance possible
● How is this exposed to the user?

Challenges Ahead
In Core Kubernetes

23

Technical Challenges Ahead
For GPUs in Containers

At NVIDIA there are still a lot of challenges that we look forward to solve:
● Attach GPUs to containers dynamically
● Different Architectures (ARM, PowerPC, …)
● Container OS
● Virtualization
● Graphics, video encoding, …
● Support new GPUs and new GPU features
● ...

Renaud Gaubert

Thank You!

