The Path to
Kubernet

Renaud Gauber

May 03, 2018

RUNNING A GPU APPLICATION

Customers using DL

o RHEL 7.3 “This framework requires installing 6
DL Application { s Driver 375 dependencies from sources”
S W P
\ / = = I Python 2.7

N : “ :
; | want to train my model on the cluster
l' T~ s but it’s running RHEL 7”

H s CUDA 9.0

= Driver 384 . .

e bythor 3.5 “Some machines in the cluster have

different NVIDIA hardware & drivers”
HH HH i Hssvammf o -‘j:‘I:EI IR e Y S I i I -::::El “HOW do I deploy a DL mOdel/application
=t = = = =i = at scale”

v . “How do | deploy a fault tolerant inference
= J service”

7 <ANVIDIA.

NVIDIA CONTAINER RUNTIME

Enables GPU support in various container runtimes

Integrates Linux container internals
instead of wrapping specific runtimes
(e.g. Docker)

Containerized
Applications

Includes runtime library, headers, CLI

————— OCI Runtime Interface b= ———- too lS
— Backward compatibility with
Components NVIDIA-Docker 1.0

Support new use-cases - HPC, DL,
NVIDIA Driver G raphics

3 <AnviDlA

Involvement in the Community

February 2017: Involvement in the community discussions

—
=
—
=
—
=
—
=

=
=

Spring 2017: Face 2 Face meeting

Summer 2017: Design doc merged in
Summer

Kubernetes 1.8: Alpha Feature available

Kubernetes 1.10: Beta Feature available THE FUTURE
TAKES SHAPE

rience

Spring 2018: Face to Face meeting hosted at
NVIDIA

4 SAnviDlA.

CONTAINER ORCHESTRATION: KUBERNETES

Kubernetes is a portable, extensible open-source platform for managing containerized workloads

and services, that facilitates both declarative configuration and automation

Service
Discovery
Supports auto scaling, self-healing, Authentication
multi-region clusters Authorization
Upstream GPU support still beta and Conta.iner
provisioning a GPU cluster can be : Runtime
challenging Meglcs

Logging

Security

Intelligent
Scheduling

5 &nvibiA.

KUBERNETES ROADMAP FOR NVIDIA GPUs

| |
I Alpha GPU Support [
: (--accelerators) : :

v/ Experimental support v/ NVIDIA Device Plugin (alpha) GPU Health Checks and Monitoring
(16 Supports one GPU / nOde) / Uses new NVIDIA Container Heterogeneous GPU Support
v/ Manually mount the volumes in Runtime Support for MPS

GPU Topology aware

Device Plugin support for GPU
lifecycle management

Representing resources in the cluster

your pod spec
v/ No GPU Monitoring or Health
check

N O SNSSNSNANNS

v1.8 -v1.10

6 <AnvVIDIA.

Kubernetes User Perspective

Motivations and Opportunity for Growth

In 1.6 - 1.7 Kubernetes had experimental GPU support

1.6 supports one GPU per node %
®
Manually mount the driver volumes
& &
Fragmented ecosystem for GPU support H e S
No GPU metrics or health checks 0ok 0Im
s OB
e 0dIe

8 NVIDIA.

NVIDIA Device Plugin

In 1.8 we introduced the device plugin system

You deploy a Daemonset in your cluster for it to be GPU aware
Reports to the cluster and setup the GPU resources

Exposes the GPU resource inside your containers

$ kubectl create -f raw.github/.../NVIDIA/.../v1.10/device-plugin.yml

9 NVIDIA.

GPU Pod

apiVersion: vl
kind: Pod
metadata:
name: gpu-pod
spec:
containers:

- name: digits-container
image: nvidia/digits:6.0
resources:

limits:
nvidia.com/gpu: 2 # requesting 2 GPUs

10 <InviDiA.

Updating for GPU Services

Good luck doing your blue green update!

kubectl edit deployment/gpu-deployment

Node A Node A Node A I Pod

- e = = -

11 NVIDIA.

Resiliency for GPU Services

When deploying an inference service some things are slow:
e Provisioning a GPU instance
e Loading the data

Node A Node B

I . - - Inference Liveness Probe

- e o - -

12 < nvibDiA

Scaling for GPU Services

e Scale based on QPS not GPU load
e Use Inter-pod affinity to land on nodes that have your data pod
e Keep some spare nodes

Load Balancer / Auto scaler/ ...

\ &/ 13 @nvoia

Operating a GPU Cluster

In order User queues
Possible Solutions: Use an operator? A custom scheduler?

14 < nvibia

Kubernetes Developer Perspective

Device Plugin Lifecycle

o Deploys the

e Container Create
Device plugin

e
dh

>
Registers e Driver install
- (optional)
List Devices Metrics
3 GPUs Node (- b C)
S el (Kubelet) - -
- NVIDIA
- Device Plugin
-€
-
-
3 GPUs .
1 Unhealthy e ——————
-+ <<] ¢ GPU
3 GPUs ' ® Crash
S — - _—
_ VAN J

16 <InviDiA.

Device Plugin Lifecycle

Pod Creation

API Server

Pod Deletion

Devices and
Node Selection

Node

(Kubelet)

Pod Admission

=

Initialize Containers

/

AL/

_

\ YV

Pod Deleted

=

NVIDIA

Device Plugin

17 < nviDiA.

Zero Downtime Registration

Watches

/P

' ' [var/lib/kubelet/device-plugins

N

®| /varl...Invidia.com/gpu:1.8.sock

®| Ivarl...Invidia.com/gpu:1.9.sock

®| /varl...Invidia.com/gpu-2:1.9.sock

J

gRPC server

Nvidia device plugin:1.8

gRPC server

Nvidia device plugin:1.9

18 <Anvipia.

Current Challenges
and
Challenges Ahead

GPU Monitoring

Upstream Enhancements

e |dentify badly behaved tasks and unhealthy GPUs

Reports basic metrics (GPU utilization, Memory usage) e Detect power inefficiencies
e |dentify bottlenecks and throttling

Load Average GPU Power Usage GPU Power Total NVLINK Bandwidth

0.8 500 W 1.00 Bps

400 W

300 W 0.75Bps

200 W i] 1 0.50 Bps

100 W

ow . 0.25 Bps
22:10 2215 22:20
== GPU1 Current: 58 W == GPUb Current: 5/ W 396 W 0 Bps
2210 2215 2220 = GPU7 Current: 41W == GPUO Current: 41 W 2210 2215 2220
== Tmin == 5min == 15min == GPU S5 Current: 59 W == GPU4 Current: 56 W == Total Current: 0 Bps
Memory Usage GPU Temperature * GPU Avg. Temp PCle Throughput
7.569 GiB 35.0°C 1000 B
° W
7.567 GiB 325°C 500 B
7.565 GiB 0oe 0B
' 27.5°C N—\=F" vV /S VV X
7.562 GiB 28106 5008 G
7.560 GiB 22:10 2215 22:20 31 °C O i Rt o
7,558 GiB == GPU 3 Current: 27.00 °C == GPU 2 Current: 30.00 °C 22:10 2215 22:20
22:10 2215 22:20 == GPU 1 Current: 32.00 °C == GPU 6 Current: 34.00 °C

== Tx Current: 790 B == Rx Current: 673 B

AT Aeee 2. AN AN 0N AP A A 2. AN AN A

Current Challenges

In Core Kubernetes

Feature Upstream Enhancements

Specify GPU requirements for your
Heterogeneous Cluster Manually label nodes with GPU attributes pod

Support Taints, Tolerations, ... (Minimum Memory, NVLINK
connection, ECC Enabiled, ...)

Docker and CRIO were not fully
supported:
Additional Runtimes e The NVIDIA runtime is used for all

Full Docker and CRIO support
Support images

e Images that did not request GPUs
might have all GPUs exposed

21 <nviDiA.

Challenges Ahead

In Core Kubernetes

Feature Enhancements

GPU Sharing Support for MPS
Make use of the full Volta capabilities for inference services

e How is this exposed to the user?

GPU Topology Aware

Users are exposed to more and more complex topologies
Make sure that users get the best performance possible
e How is this exposed to the user?

772 <AnviDIA.

Technical Challenges Ahead

At NVIDIA there are still a lot of challenges that we look forward to solve:
e Attach GPUs to containers dynamically

Different Architectures (ARM, PowerPC, ...)
Container OS

Virtualization

Graphics, video encoding, ...

Support new GPUs and new GPU features

23 NVIDIA.

