& o

KubeCon CloudNativeCon

Securing Kubernetes Clusters with
Notary & TUF

Liam White - Michael Hough
O—MN N\ B o —
S——Cl @fj/ .



Liam White

Software Engineer, IBM Cloud

IBM Cloud Container Registry
Istio Contributor

Q liamandrewwhite
@ github.com/liamawhite

.



Michael Hough

Software Engineer, IBM Cloud

TR R TR - ey -
s e

T T TR T

-
P e
Loagapss pana oot "N

T o P L S
T
VINT b s S s oo s s
e - 3

—

IBM Cloud Container Registry
Notary Project Contributor

i
'l
/bl
:
r
4
r
r.
r
r_\
K
[}
]
fds B
]
L
F

Vol A M DR T

€ molepigeon
@ github.com/molepigeon
@ linkedin.com/in/molepigeon




Security is hard.




Containers are faster,
but less secure?




How do you make sure that only
trusted code runs in your
production environments?




Not who, but what




How do you sign off on a release before it
goes to production?




What about the bad guys?




Digitally sign it!
But how do you sign a Docker image?
Enter Notary
Implements The Update Framework (TUF)

Stores trusted data ... such as Docker image digests




Digest for ubuntu:latest,
please!

Content for ubuntu@12345,
please!

© ETEE

12345

<stuff>

.2



Digest for ubuntu:latest,

© I

please!

12345, and it's signed by

| trust Bob...

And his signature checks out!

Content for ubuntu@12345,

Alice, Bob, and Charlie

© ETEE

please!

<stuff>

6.3



Why not use Docker Content Trust in your cluster?

Who else do you trust?

What about the kubelet images?




Kubernetes deserves powerful trust
management




Admission Controllers




Validating Admission Webhook
Mutating Admission Webhook




:4bd87a5758£80eedb01335676a9e47347801fc...




Mutating Webhook




API Server -> Webhook (AdmissionRequest)

{
uid: "a2e5846b-059a-4d56-a564-3b7c4fcdcctb”,

kind: {
group: """,
version: "v1",
kind: "Pod",

b

resource: {

group: ,
version: "v1",
resource: "pods",

b
namespace: "default",

operation: "CREATE",

object: <lots-of-bytes>




API Server <- Webhook (AdmissionResponse)

{

uid: "a2e5846b-059a-4d56-a564-3b7cd4fcdcctb”,

allowed: ,

// If !'allowed give a reason to inform the user
result: {

status: "Failure",
message: 'Untrusted Image",
code: "401",

patchType: "JSONPatch",

patch: <some-bytes>




API Server <- Webhook (Patch)

operation: "replace',

path: "/spec/containers/0/image",

value: "liamwhite/kubecon@sha256:4bd87a5758f80eedb01335676a9e47347801fc",




S

PORTIERIS

github.com/ibm/portieris




Whitelist Images
Fail Closed
Namespace or Cluster Wide Policies

Extensible




apiVersion: securityenforcement.admission.cloud.ibm.com/vlbetal
kind: ClusterImagePolicy

metadata:
name: kubecon-cluster-image-policy

spec:
repositories:
- name: "docker.io/liamwhite/kubecon”
policy:
trust:
enabled:




apivVersion: securityenforcement.admission.cloud.ibm.com/vlbetal
kind: ClusterImagePolicy

metadata:
name: kubecon-cluster-image-policy-pinned

spec:
repositories:
- name: "docker.io/liamwhite/*"
policy:
trust:

enabled:
signerSecrets:
- name: <secret name>




apiVersion: vl
kind: Secret
type: Opaque
metadata:
name: <secret name>
data:
name: c2lnbmVyMQ==
publicKey: LSO0tLS1CRUdAJTiBQVUJMSUMgSOVZLSOtLSO...




apivVersion: securityenforcement.admission.cloud.ibm.com/vlbetal
kind: ImagePolicy

metadata:
name: kubecon-image-policy
namespace: default

spec:
repositories:
- name: "docker.io/liamwhite/*"
policy:
trust:

enabled:
signerSecrets:
- name: <secret name>




Demo




© liamandrewwhite
© molepigeon

github.com/ibm/portieris



