
kubeadm deep dive
Luke Marsden - Dotmesh

Tim St. Clair - Heptio
Alexander Kanevskiy - Intel

Agenda

1. Luke: kubeadm intro & history
2. Tim: Upgrades, self-hosting & HA
3. Alexander: Using kubeadm in enterprise environment

kubeadm intro & history
Luke Marsden - dotmesh

Formation of SIG-cluster-lifecycle

It's September 2016…
• "Kubernetes is too hard to install!"

• Kubernetes the hard way!
• Community felt pressure to deliver a standard, simple way to

install Kubernetes
• Many projects to install Kubernetes forming… clearly there

was a need
• Spun out SIG-cluster-lifecycle from SIG-cluster-ops

• Goal to build tools and a toolkit to make Kube easier to install

• Make Kubernetes insanely
easy to install

• 3 phases to installation
• Variety in how people provision

machines
• Decided to focus on

bootstrapping, not provisioning!
• Two commands, plus add-ons

kubeadm goals

add-ons

bootstrapping k8s

provisioning
(get machines)

kubeadm example

• First release in Kubernetes 1.4
• Step 1: get some computers running Linux
• Then...

install docker

install kubelet, kubeadm, kubectl

kubeadm init

kubeadm join

bare cluster ready for networking

install networking (example)

install storage (example)

cluster ready for your apps!

kubeadm example

• Limitations: initially, kubeadm clusters were:
• hard to upgrade
• there was no "easy path" to setting up High Availability

• Over to Tim...

Self-Hosting, Upgrades,
HA

Timothy St. Clair - Heptio

Understanding the Feature Circle

HASelf
Hosting

Upgrades

What is Self Hosting?

Running Kubernetes on
Kubernetes
• Only the k8s control plane

and
• Not Etcd
• Not Kubelet

• Ease of upgrades, use
kubernetes primitives

Why does this take so long

● There are deep tensions between feature enablement and
simple and clean UX. (per lukes earlier points)
○ “Config knobs”

● Distillation of best practices and lessons learned
● Desire to be supportable
● Legacy of long-tail untenable support configurations

○ Breaking feature changes.
● Pending on other feature enablements

○ Component Configuration
○ To checkpoint or not to checkpoint

■ Understanding the security and other dependent implications

What is the status of self hosting?

• Still alpha
• Rethinking the problem to avoid the checkpoint dilemma

• Current implementations (boot-kube) force checkpointing
on pod, secrets, configmaps …

• You *only* need an api-server to come back online
• Write-up a KEP on what we are calling the Sentinel, or

“Pilot Light”

Rethinking of Self Hosting (Edge)

1. Kubeadm deploys a single static manifest (kubeadm-sentinel)
2. Sentinel checks is api-server is running

a. checks on well defined sentinel file (/var/run/kubernetes)
3. If not, deploys static manifest using host volume mounts for

certs
4. Waits for local kubelet to checkin and restart it’s bound pods
5. Self hosted sentinel+apiserver pod restarts and drops

sentinel marker
6. Static sentinel shuts down api-server and enters wait-loop

Upgrades

• Distillation of Best Practices
• Ensuring we only rely on Beta+ Features
• Need to create better test jiggery

• Want a canonical provisioning tool “cluster-api”

High Availability - understanding

There is often a conflation between HA of the control plane and
HA of your workloads.
• Focus more on your workloads
• The control plane can recover from a prolonged outage
• Provide alerting on your master nodes
• Understand your tolerances

• MTTF
• MTTR
• Flux rate, or gradient, of your cluster “How much churn”

High Availability - status

(consensus) etcd
• Can be done today using docs today
• Better documentation coming in 1.11phases

(active-active) api-server
• Requires configuration changes, and is documented

(active-passive) controller manager, scheduler
• Needs shift to component config + config map locking
• Also can be done today

Example Deployment

ETCD

Masters - (Kubelet managed w/ systemd unit file)

Load
Balancer

Sentinel

apiserver

Scheduler KCM

Nodes

Deployment Constraints

• Planning
• Ingress and Egress
• air-gapping
• LB’ers

• … Over to Alexander.

kubeadm in enterprise
environment
Alexander Kanevskiy - Intel

Kubeadm in enterprise:
The problem statement

Problem: many users are experiencing issues of using kubeadm
in not-so-ideal environments
• Installation and upgrades
• Fine-tuning startup parameters
• “Calling home” and offline Kubernetes cluster installs
• Network and proxies

Kubeadm in enterprise:
Install and Upgrade

How users are getting kubeadm
• Supported distributions

• Container Linux
• DEBs and RPMs:

Ubuntu, Debian, Hypriot, RHEL,
CentOS, Fedora

• There are other distros
• OpenSuSE, ArchLinux, …

What is actually needed on the node
• kubeadm
• kubelet
• kubectl
• CNI plugins

For unsupported distros you can use Container Linux section for manually install binaries
https://kubernetes.io/docs/setup/independent/install-kubeadm/

Kubeadm in enterprise:
Fine-tuning kubelet systemd unit

SystemD units shipped with kubeadm:
• /etc/systemd/system/kubelet.service

• https://raw.githubusercontent.com/kubernetes/kubernetes/${RELEASE}/build/debs/kubelet.service

• /etc/systemd/system/kubelet.service.d/10-kubeadm.conf
• https://raw.githubusercontent.com/kubernetes/kubernetes/${RELEASE}/build/debs/10-kubeadm.conf

Local configuration:
• /etc/systemd/system/kubelet.service.d/90-local.conf

[Service]
Environment="KUBELET_CGROUP_ARGS=--cgroup-driver=cgroupfs"
Environment="KUBELET_EXTRA_ARGS=--fail-swap-on=false"

Kubeadm in enterprise:
Offline installation

• “Calling home”
• --kubernetes-version

• stable, stable-1, stable-1.9, ...
• latest, latest-1, latest-1.10, ...
• ci/latest-1.11

• upgrade plan

• Images from k8s.gcr.io
• pause
• etcd
• kube-apiserver
• kube-controller-manager
• kube-scheduler
• kube-proxy

https://dl.k8s.io/release/${RELEASE}/bin/linux/amd64

$ gsutil ls -l gs://kubernetes-release/release/v1.10.2/bin/linux/amd64/

Kubeadm in enterprise:
Network and Proxies

• Proxy for CRI
• HTTP_PROXY
• HTTPS_PROXY
• NO_PROXY

• Attention: local registries

Internet HTTP(S)
Proxy

DMZ

Firewall

Node Node Node

LANNO_PROXY=example.com,192.168.0.0/16,10.0.0.0/8

• Proxy for kubeadm
• HTTP_PROXY
• HTTPS_PROXY
• NO_PROXY

• Node IPs range
• Service IPs range
• POD IPs range

Thank you!

- Questions?
- Further reading

- https://kubernetes.io/blog/2016/09/how-we-made-kubernetes-easy-to-install
- https://kubernetes.io/docs/setup/independent/install-kubeadm/
- https://docs.dotmesh.com/install-setup/kubernetes/
- https://kubernetes.io/docs/setup/independent/high-availability/
- https://github.com/kubernetes/kubeadm for issues

https://kubernetes.io/blog/2016/09/how-we-made-kubernetes-easy-to-install
https://kubernetes.io/docs/setup/independent/install-kubeadm/
https://docs.dotmesh.com/install-setup/kubernetes/
https://kubernetes.io/docs/setup/independent/high-availability/
https://github.com/kubernetes/kubeadm

