
Rook Deep Dive
Tony Allen, Rook Contributor, Upbound Engineer
Alexander Trost, Rook Contributor, System Administrator

https://rook.io/
https://github.com/rook/rook

https://rook.io/
https://github.com/rook/rook


● Cloud-Native Storage Orchestrator
● Extends Kubernetes with custom types and controllers
● Automates deployment, bootstrapping, configuration, 

provisioning, scaling, upgrading, migration, disaster recovery, 
monitoring, and resource management

● Framework for many storage providers and solutions
● Open Source (Apache 2.0)
● Hosted by the Cloud-Native Computing Foundation (CNCF)

What is Rook?



● Reliance on external storage
○ Requires these services to be accessible
○ Deployment burden

● Reliance on cloud provider managed services
○ Vendor lock-in

● Day 2 operations - who is managing the storage?

Storage Challenges



● Deploy storage systems INTO the cluster
● Portable abstractions for all storage needs

○ Database, message queue, cache, object store, etc.
● Power of choice: cost, features, resiliency, compliance
● Automated management by smart software

Possible Solutions



● Teaches Kubernetes about new first-class objects
● Custom Resource Definition (CRDs) are arbitrary types that 

extend the Kubernetes API
○ look just like any other built-in object (e.g. Pod)
○ Enabled native kubectl experience

● A means for user to describe their desired state

Custom Resource Definitions (CRDs)



● Implements the Operator Pattern for storage solutions
● User defines desired state for the storage cluster
● The Operator runs reconciliation loops

○ Observe - Watches for changes in desired state and cluster
○ Analyze - Determine differences between desired and 

actual
○ Act - Applies changes to the cluster to drive it towards 

desired

Rook Operators



Rook Framework for Storage Solutions

● Rook is more than just a collection of Operators and CRDs
● Framework for storage providers to integrate their solutions 

into cloud-native environments
○ Storage resource normalization
○ Operator patterns/plumbing
○ Common policies, specs, logic
○ Testing effort

● Ceph, CockroachDB, Minio, Nexenta, and more...



Developer Deep Dive:
New Minio Operator



Minio ObjectStore CRD



Minio ObjectStore Custom Object



Using the Object Store CRD



Using the Object Store CRD



Revisiting the ObjectStore

● Rook knows how to work with 
common information in storage 
object specs (networking, node 
counts, etc.)

● Only the credentials are 
Minio-specific.

● We can use this information to 
deploy a Minio cluster.



Minio Operator

● We specify the container that 
the Minio operator will reside in.

● Args are provided to inform the 
Rook binary that it needs to 
operate on Minio.

● We would include the CRD in 
the same file as this operator 
description.



Minio Operator Container Image

● Contains both Minio 
server/tools and Rook 
libraries.

● Optimized docker build to 
collapse layers and minify 
image.

● Base image is Ubuntu 
Xenial.



Minio ObjectStore Golang Types

● It’s necessary to implement an 
ObjectStore struct that defines 
the config properties the user 
can edit in the ObjectStore yaml

● Notice the spec uses common 
types from the Rook framework.



Minio Operator Watching for Events

● We create a new watcher 
to watch for add, update, 
or delete events.

● Event handler functions 
are passed to the Rook 
operator-kit.



Watching with Informers

● We use an Informer to 
watch for k8s events, 
which prevents excessive 
polling on the API server.

● The informer keeps a 
cache of objects to limit 
GETs.



ObjectStore Add Handler

● The add handler 
implementation uses the 
k8s API to create services, 
stateful sets, etc.

● We programmatically 
follow the deployment 
procedure for the Minio 
cluster.



ObjectStore Update Handler



Administrator Deep Dive



Monitoring

● Prometheus Metrics through Ceph MGR Module
● Dashboards available on Grafana.com

Example Alert Rules - Coming soon!
When I have polished mine ;)



Maintenance/Helpful Tips

● Monitoring:
○ Latency Check

■ Watchout for “anomalies”
○ (Working) Alert rules

● (Deep) Scrubbing of OSDs
○ Is enabled automatically => verify that it is done!



Demo



Specifications

OS: Container Linux
Container Runtime: CRI-O (FTW!)

● 3 x K8S Master (for HA)
● Total Nodes: 8

Node Hardware Specs:
● CPU: i7-6700 Quad HT (Skylake)
● Memory: 32GB DDR4
● Storage: 2 x 4TB
● Network: 1 GBit/s

(Price: ~34€ + 79€ Setup)



Specifications - Disk Layout

Disk 1:
● OS: ~80GB
● Rook Partition: ~3910GB

Disk 2:
● Rook: ~3979GB (+ WAL 605MB + 

DB 21.5GB)

“Raw” Storage Capacity:
8 Nodes * 2 Disks * 4TB

=> 64TB

“Real” (Available) Storage Capacity:
=> ~57.7TB



Demo

Production cluster running 
stateful applications



● Contribute to Rook
○ https://github.com/rook/rook
○ https://rook.io/

● Slack - https://rook-io.slack.com/
○ #conferences now for Kubecon EU

● Twitter - @rook_io
● Forums - https://groups.google.com/forum/#!forum/rook-dev
● Community Meetings

How to get involved?

https://github.com/rook/rook
https://rook.io/
https://rook-io.slack.com/
https://groups.google.com/forum/#!forum/rook-dev


More Sessions

● Kubernetes Runs Anywhere, but Does your Data?
○ Fri May 4th 14:45, Auditorium 10



Questions?
https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/


Thank you!
https://github.com/rook/rook

https://rook.io/

https://github.com/rook/rook
https://rook.io/

