
OpenCensus and Istio
Morgan McLean - Product Manager, Google

Varun Talwar - Founder, Startup

This was an image of the 2001: Space Odyssey monolith, but it’s probably copyrighted so I removed it

Function
A, B, C

Function
D

Database
Function

E

Client application

Critical instrumentation:

Understanding how the system works
● Static code analysis
● Local debugging

Basic monitoring
● System-level metrics:

○ CPU consumption
○ Memory consumption

● Application-level metrics:
○ Endpoint latency
○ Custom metrics

● Logs

Performance tuning
● Offline / local testing
● Offline / local debugging
● Profiling
● Non-distributed “transaction” traces

Service A

Database

Client application

Service B

Service C

Critical instrumentation:

Understanding how the system works
● Distributed tracing

Basic monitoring
● System-level metrics:

○ CPU consumption
○ Memory consumption

● Application-level metrics:
○ Endpoint latency of each node
○ RPC stats
○ Custom metrics

● Logs

Performance tuning
● Distributed tracing
● Production debugging
● Continuous profiling

Distributed tracing gives us:

● Application topology

● A view into how certain requests are
handled

● An understanding of where the system
is performing poorly

● An understanding of where errors are
occuring

● Correlation / context for other signals
like logs, errors, metrics, profiles, etc.

Application metrics give us:

● Latency, RPC stats at every level of the
stack

● Custom metrics

Why is this hard?

• Ideally, traces and stats should be automatic for each RPC
• This requires integrations with every language, RPC framework,

storage client, API client, etc.
• Projects like OpenCensus and OpenTracing are targeting this

• Libraries vs. agents?
• Agents can be very slick
• Libraries can be managed through source control, have less ‘magic’,

and provide an API

What does OpenCensus provide?

• An implementation for tracing, application stats, and tags
targeting 8 languages
• C++, Java, Go, Python, PHP, Ruby, .Net, node.js
• Integrations with web / RPC frameworks, storage clients, etc.
• APIs for interacting with spans, stats, tags
• Exporters

• Realtime unsampled analysis with z-pages

/z pages

Tags

• Tags are key value pairs that are used to store information
about metrics

• Define your dimensions and view recorded data by dimensions
• Very powerful concept

• ip=10.32.103.12
• user-agent=curl/1.0
• coupon=discount-1f1acdbe3

How does this work at Google?

Tracing at Google is automatically built into every service, made
possible by Google’s internal platform

OpenCensus + Istio

Envoy
• Configuration for Envoy stats

• Application and Envoy level Tracing + exporters

Mixer
• Aggregation
• Provide Mixer adapter for OpenCensus that generates trace spans

from Mixer report calls. (Planned for summer)
• OC Lib

• Tags, Pass headers

Doesn’t Envoy Provide This?

Yes, but:
• You have to perform correlations yourself
• No automatic spans from client libraries
• You can’t create custom spans, stats, tags, etc.
• No z-pages

Use OpenCensus for app instrumentation, builtin Envoy tracer for
additional spans

OpenCensus + Istio

Service BService A Service C

100ms 90msCode
Istio

Proxy

Code
Istio

Proxy

Code
Istio

Proxy

Backend(s)

OC Lib OC Lib OC Lib

Hello World
gRPC and OpenCensus example

 Code here: https://github.com/rakyll/opencensus-grpc-demo

https://github.com/rakyll/opencensus-grpc-demo

What’s coming next?

Istio + OpenCensus
• Completing Envoy support
• Mixer adapter for

OpenCensus

OpenCensus
• More integrations: MongoDB,

Spring, etc.
• Completing libraries across

all 8 languages
• Client-side instrumentation

for mobile and web apps
• More intelligent sampling
• Logs? Profiles? Errors?

Please visit opencensus.io
for more details

