Observability & Debugging Microservices
with Linkerd and Conduit

i Franziska von der Goltz

'Y B Software Engineer at Buoyant
‘g% @franziskagoltz

S BUOYANT

About me

Software Engineer at Buoyant
Twitter: @franziskagoltz

| work on service meshes!

E

@franziskagoltz

Debugging Microservices is Hard

— Application logic is split across service boundaries

@franziskagoltz

Debugging Microservices is Hard

— Application logic is split across service boundaries

— Services are owned by different teams

@franziskagoltz

Debugging Microservices is Hard

— Application logic is split across service boundaries
— Services are owned by different teams

— Services are comprised of many running instances

@franziskagoltz

Debugging Microservices is Hard

— Application logic is split across service boundaries
— Services are owned by different teams
— Services are comprised of many running instances

— Instances are potentially being rescheduled any moment

@franziskagoltz

Debugging Microservices is Hard

— Application logic is split across service boundaries

— Services are owned by different teams

— Services are comprised of many running instances

— Instances are potentially being rescheduled any moment

As a result, tools that used to work for monoliths break down, and we
see a new set of tools.

)

@franziskagoltz

Service Mesh

What is a Service Mesh?

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

@franziskagoltz

What is a Service Mesh?

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

— How? By managing all runtime service communication.

@franziskagoltz

What is a Service Mesh?

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

— How? By managing all runtime service communication.

— Provides: circuit breaking, requesting routing, security policy, etc.

@franziskagoltz

What is a Service Mesh?

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

— How? By managing all runtime service communication.
— Provides: circuit breaking, requesting routing, security policy, etc.

Today’s focus: debugging.

@franziskagoltz

@franziskagoltz

Example service meshed request

Bar —» | Proxy Proxy —» Foo

Pod 1 Pod 2

@franziskagoltz

Example service meshed request

Bar —» | Proxy Proxy —» Foo

Pod 1 Pod 2

The proxies knows:

- How long the request took (latency)

@franziskagoltz

Example service meshed request

Bar —» | Proxy Proxy —» Foo

Pod 1 Pod 2

The proxies knows:

- How long the request took (latency)
- Whether it succeeded or failed (success rate)

@franziskagoltz

Example service meshed request

Bar —» | Proxy Proxy —» Foo

Pod 1 Pod 2

The proxies knows:

- How long the request took (latency)
- Whether it succeeded or failed (success rate)
- How many of these requests happened recently (volume)

@franziskagoltz

Example service meshed request

Bar —» | Proxy Proxy —» Foo

Pod 2

Pod 1

The proxies knows:

- How long the request took (latency)

- Whether it succeeded or failed (success rate)

- How many of these requests happened recently (volume)
- Who sent the request, and who received it (identity)

@franziskagoltz

Example service meshed request

Bar —» | Proxy Proxy —» Foo

Pod 1 Pod 2

The proxies knows:

- How long the request took (latency)

- Whether it succeeded or failed (success rate)

- How many of these requests happened recently (volume)
- Who sent the request, and who received it (identity)

- Lots more! (was it retried, which instance it went to, etc.)

@franziskagoltz

How does a service mesh help with debugging?

Aggregating this data allows the mesh to paint a detailed picture of
your application!

@franziskagoltz

How does a service mesh help with debugging?

Aggregating this data allows the mesh to paint a detailed picture of
your application!

Top-line metrics:

- Successrate
- Latency distribution
- Request volume

@franziskagoltz

How does a service mesh help with debugging?

Aggregating this data allows the mesh to paint a detailed picture of
your application!

Top-line metrics:

- Successrate
- Latency distribution
- Request volume

Tied to identity, including caller/callee relationships!

@franziskagoltz

Service mesh debugging

This is a fundamentally different class of diagnostics information.

@franziskagoltz

Service mesh debugging

This is a fundamentally different class of diagnostics information.

— What’s the success rate of Foo?

@franziskagoltz

Service mesh debugging

This is a fundamentally different class of diagnostics information.
— What's the success rate of Foo?

— Which services call Foo?

@franziskagoltz

Service mesh debugging

This is a fundamentally different class of diagnostics information.
— What's the success rate of Foo?
— Which services call Foo?

— What's the success rate of Foo when called by Bar?

@franziskagoltz

Service mesh debugging

This is a fundamentally different class of diagnostics information.
— What's the success rate of Foo?
— Which services call Foo?
— What's the success rate of Foo when called by Bar?

— What's the request volume, latency distribution, ...

@franziskagoltz

Service mesh debugging

This is a fundamentally different class of diagnostics information.
— What's the success rate of Foo?
— Which services call Foo?
— What's the success rate of Foo when called by Bar?
— What's the request volume, latency distribution, ...

All without having to modify our applications.

@franziskagoltz

€

CONDUIT

Conduit

- Open source service mesh (Apache v2)

- Built from the ground up for Kubernetes

- Ultralight, ultrafast

- Data plane: tiny Rust proxies, ~2mb RSS, <1ms p99 latency
- Control plane: Go

- Supports: HTTP/2, HTTP, gRPC, and TCP

- 0.4.1 (alpha) released last week!

@franziskagoltz

Conduit

- Open source service mesh (Apache v2)

- Built from the ground up for Kubernetes

- Ultralight, ultrafast

- Data plane: tiny Rust proxies, ~2mb RSS, <1ms p99 latency
- Control plane: Go

- Supports: HTTP/2, HTTP, gRPC, and TCP

- 0.4.1 (alpha) released last week!

Goals:
zero config reliability, security, and visibility for Kubernetes agpsanziskagoltz

@ Follow along at home!

$ curl https://run.conduit.io/install | sh

@franziskagoltz

Live debugging of a Kubernetes £

1. Install an app.

Live debugging of a Kubernetes. |

1. Install an app. _
2. Ohno, it’s failing! (Some of the time.)

Live debugging of a Kubernete

1. Install an app.
2. Ohno, it’s failing! (Some of the time.)
3. Trytouse Kubernetes dashboard. No |u

Live debugging of a Kubernete

LW

Install an app.
Oh no, it’s failing! (Some of the time.)

Try to use Kubernetes dashboard. No luc
Install Conduit control p {

Live debugging of a Kubernete

bk owbde

Install an app. f
Oh no, it’s failing! (Some of the time.)

Try to use Kubernetes dashboard. No luc
Install Conduit control p
LIVE INJECT Condui

Live debugging of a Kubernete

ok bR

Install an app.
Oh no, it’s failing! (Some of the time.)
Try to use Kubernetes dashboard. No |
Install Conduit control p
LIVE INJECT Condui
Use Conduit to trac '

Live debugging of a Kubernete

NOo bk oD

Install an app.

Oh no, it’s failing! (Some of the time.)
Try to use Kubernetes dashboard. No |
Install Conduit control p
LIVE INJECT Conduy ‘ |
Use Conduit to trace the source o
Use Conduit to identify the failing en

Live debugging of a Kubernete

©NO LA DR

Install an app.

Oh no, it’s failing! (Some of the time.)
Try to use Kubernetes dashboard. No |
Install Conduit control p
LIVE INJECT Condw; ‘ |
Use Conduit to trace the source o
Use Conduit to identify the failing en
Profit.

Demo App

Browser

VoteBot

@ Follow along (if you wish)

#GitHub repo: http://bit.ly/kubecondemo

$ curl https://run.conduit.io/install | sh
$ conduit install | kubectl apply -f -
$ curl http://bit.ly/emojivoto |

conduit inject - | kubectl apply -f -

@franziskagoltz

Demo Review

— Installed Emojivoto App on K8S
— Saw errors, but saw nothing on the K8s dashboard

— Installed Conduit

— Used stat and tap commands to identify a failing call deep within
the application’s topology

— Yelled at the correct teams to fix their code!

All without modifying, or even taking down, the app.

@franziskagoltz

In conclusion

— Debugging microservices is fundamentally different from
debugging monolithic apps

@franziskagoltz

In conclusion

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging
information at the right layer of abstraction

@franziskagoltz

In conclusion

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging
information at the right layer of abstraction

— It's easy! And you don’t have to modify your application!

@franziskagoltz

In conclusion

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging
information at the right layer of abstraction

— It's easy! And you don’t have to modify your application!

— Try it out today: conduit.io

@franziskagoltz

In conclusion

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging
information at the right layer of abstraction

— It's easy! And you don’t have to modify your application!
— Try it out today: conduit.io

— 100% open source, Apache v2, works with Kubernetes 1.8+

@franziskagoltz

Any Questions?

Franziska von der Goltz
Software Engineer

@franziskagoltz

franziska@buoyant.io

