
Observability & Debugging Microservices
with Linkerd and Conduit

Franziska von der Goltz
Software Engineer at Buoyant
@franziskagoltz

About me

@franziskagoltz

Software Engineer at Buoyant

Twitter: @franziskagoltz

I work on service meshes!

Debugging Microservices is Hard

@franziskagoltz

— Application logic is split across service boundaries

Debugging Microservices is Hard

@franziskagoltz

— Application logic is split across service boundaries

— Services are owned by different teams

Debugging Microservices is Hard

@franziskagoltz

— Application logic is split across service boundaries

— Services are owned by different teams

— Services are comprised of many running instances

Debugging Microservices is Hard

@franziskagoltz

— Application logic is split across service boundaries

— Services are owned by different teams

— Services are comprised of many running instances

— Instances are potentially being rescheduled any moment

Debugging Microservices is Hard

@franziskagoltz

— Application logic is split across service boundaries

— Services are owned by different teams

— Services are comprised of many running instances

— Instances are potentially being rescheduled any moment

As a result, tools that used to work for monoliths break down, and we

see a new set of tools.

Service Mesh

What is a Service Mesh?

@franziskagoltz

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

What is a Service Mesh?

@franziskagoltz

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

— How? By managing all runtime service communication.

What is a Service Mesh?

@franziskagoltz

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

— How? By managing all runtime service communication.

— Provides: circuit breaking, requesting routing, security policy, etc.

What is a Service Mesh?

@franziskagoltz

— Dedicated infrastructure layer for adding reliability, security,
visibility to a cloud native application.

— How? By managing all runtime service communication.

— Provides: circuit breaking, requesting routing, security policy, etc.

Today’s focus: debugging.

@franziskagoltz

Data plane

Control plane
Policy

Metrics
UI

Example service meshed request

@franziskagoltz

Example service meshed request

@franziskagoltz

The proxies knows:

- How long the request took (latency)

Example service meshed request

@franziskagoltz

The proxies knows:

- How long the request took (latency)
- Whether it succeeded or failed (success rate)

Example service meshed request

@franziskagoltz

The proxies knows:

- How long the request took (latency)
- Whether it succeeded or failed (success rate)
- How many of these requests happened recently (volume)

Example service meshed request

@franziskagoltz

The proxies knows:

- How long the request took (latency)
- Whether it succeeded or failed (success rate)
- How many of these requests happened recently (volume)
- Who sent the request, and who received it (identity)

Example service meshed request

@franziskagoltz

The proxies knows:

- How long the request took (latency)
- Whether it succeeded or failed (success rate)
- How many of these requests happened recently (volume)
- Who sent the request, and who received it (identity)
- Lots more! (was it retried, which instance it went to, etc.)

How does a service mesh help with debugging?

@franziskagoltz

Aggregating this data allows the mesh to paint a detailed picture of
your application!

How does a service mesh help with debugging?

@franziskagoltz

Aggregating this data allows the mesh to paint a detailed picture of
your application!

Top-line metrics:

- Success rate

- Latency distribution

- Request volume

How does a service mesh help with debugging?

@franziskagoltz

Aggregating this data allows the mesh to paint a detailed picture of
your application!

Top-line metrics:

- Success rate

- Latency distribution

- Request volume

Tied to identity, including caller/callee relationships!

Service mesh debugging

@franziskagoltz

This is a fundamentally different class of diagnostics information.

Service mesh debugging

@franziskagoltz

This is a fundamentally different class of diagnostics information.

— What’s the success rate of Foo?

Service mesh debugging

@franziskagoltz

This is a fundamentally different class of diagnostics information.

— What’s the success rate of Foo?

— Which services call Foo?

Service mesh debugging

@franziskagoltz

This is a fundamentally different class of diagnostics information.

— What’s the success rate of Foo?

— Which services call Foo?

— What’s the success rate of Foo when called by Bar?

Service mesh debugging

@franziskagoltz

This is a fundamentally different class of diagnostics information.

— What’s the success rate of Foo?

— Which services call Foo?

— What’s the success rate of Foo when called by Bar?

— What’s the request volume, latency distribution, ...

Service mesh debugging

@franziskagoltz

This is a fundamentally different class of diagnostics information.

— What’s the success rate of Foo?

— Which services call Foo?

— What’s the success rate of Foo when called by Bar?

— What’s the request volume, latency distribution, ...

All without having to modify our applications.

@franziskagoltz@franziskagoltz

Conduit

@franziskagoltz

- Open source service mesh (Apache v2)
- Built from the ground up for Kubernetes

- Ultralight, ultrafast

- Data plane: tiny Rust proxies, ~2mb RSS, <1ms p99 latency

- Control plane: Go

- Supports: HTTP/2, HTTP, gRPC, and TCP

- 0.4.1 (alpha) released last week!

Conduit

@franziskagoltz

- Open source service mesh (Apache v2)
- Built from the ground up for Kubernetes

- Ultralight, ultrafast

- Data plane: tiny Rust proxies, ~2mb RSS, <1ms p99 latency

- Control plane: Go

- Supports: HTTP/2, HTTP, gRPC, and TCP

- 0.4.1 (alpha) released last week!

Goals:
zero config reliability, security, and visibility for Kubernetes apps.

Demo Time

@franziskagoltz

$ curl https://run.conduit.io/install | sh

Follow along at home!

@franziskagoltz

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

3. Try to use Kubernetes dashboard. No luck.

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

3. Try to use Kubernetes dashboard. No luck.

4. Install Conduit control plane

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

3. Try to use Kubernetes dashboard. No luck.

4. Install Conduit control plane

5. LIVE INJECT Conduit data plane into the app, without downtime.

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

3. Try to use Kubernetes dashboard. No luck.

4. Install Conduit control plane

5. LIVE INJECT Conduit data plane into the app, without downtime.

6. Use Conduit to trace the source of the error across the app.

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

3. Try to use Kubernetes dashboard. No luck.

4. Install Conduit control plane

5. LIVE INJECT Conduit data plane into the app, without downtime.

6. Use Conduit to trace the source of the error across the app.

7. Use Conduit to identify the failing endpoint.

Live debugging of a Kubernetes App

@franziskagoltz

1. Install an app.
2. Oh no, it’s failing! (Some of the time.)

3. Try to use Kubernetes dashboard. No luck.

4. Install Conduit control plane

5. LIVE INJECT Conduit data plane into the app, without downtime.

6. Use Conduit to trace the source of the error across the app.

7. Use Conduit to identify the failing endpoint.

8. Profit.

Demo App

@franziskagoltz

#GitHub repo: http://bit.ly/kubecondemo

$ curl https://run.conduit.io/install | sh
$ conduit install | kubectl apply -f -
$ curl http://bit.ly/emojivoto |
 conduit inject - | kubectl apply -f -

Follow along (if you wish)

@franziskagoltz

Live Demo Time

@franziskagoltz

Demo Review

@franziskagoltz

— Installed Emojivoto App on K8S

— Saw errors, but saw nothing on the K8s dashboard

— Installed Conduit

— Used stat and tap commands to identify a failing call deep within

the application’s topology

— Yelled at the correct teams to fix their code!

All without modifying, or even taking down, the app.

@franziskagoltz

In conclusion

@franziskagoltz

— Debugging microservices is fundamentally different from
debugging monolithic apps

@franziskagoltz

In conclusion

@franziskagoltz

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging

information at the right layer of abstraction

@franziskagoltz

In conclusion

@franziskagoltz

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging

information at the right layer of abstraction

— It’s easy! And you don’t have to modify your application!

@franziskagoltz

In conclusion

@franziskagoltz

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging

information at the right layer of abstraction

— It’s easy! And you don’t have to modify your application!

— Try it out today: conduit.io

@franziskagoltz

In conclusion

@franziskagoltz

— Debugging microservices is fundamentally different from
debugging monolithic apps

— The service mesh is uniquely positioned to provide debugging

information at the right layer of abstraction

— It’s easy! And you don’t have to modify your application!

— Try it out today: conduit.io

— 100% open source, Apache v2, works with Kubernetes 1.8+

@franziskagoltz

Franziska von der Goltz

Software Engineer

@franziskagoltz

franziska@buoyant.io

Any Questions?

