
@sometorin @OpenPolicyAgent

Open Policy Agent

@sometorin @OpenPolicyAgent

Torin Sandall
@sometorin

● Open Policy Agent co-founder and core contributor
● Istio and Kubernetes policy-related features
● ❤� good restaurants ĸ Copenhagen

@sometorin @OpenPolicyAgent

@sometorin @OpenPolicyAgent

@sometorin @OpenPolicyAgent

Policy decisions should be decoupled
from policy enforcement.

@sometorin @OpenPolicyAgent

Treat policy as a separate concern.

...just like DB, messaging, monitoring,
logging, orchestration, CI/CD...

@sometorin @OpenPolicyAgent

Gain better control and visibility over
policy throughout your system.

@sometorin @OpenPolicyAgent

Everyone is affected by policy...

@sometorin @OpenPolicyAgent

"QA must sign-off on
images deployed to the
production namespace."

"Restrict ELB changes to
senior SREs that are on-call."

"Analysts can read client data
but PII must be redacted."

"Give developers SSH access to
machines listed in JIRA tickets
assigned to them."

@sometorin @OpenPolicyAgent

Policy enforcement is a fundamental
problem for your organization.

@sometorin @OpenPolicyAgent

Tribal knowledge provides NO guarantee
that policies are being enforced.

"Tribal knowledge" is the know-how or collective wisdom of the organization.

@sometorin @OpenPolicyAgent

It is expensive and painful to maintain
policy decisions that are hardcoded into

the app.

@sometorin @OpenPolicyAgent

Service

OPA

Policy
(rego)

Data
(json)

OPA is an open source,
general-purpose policy
engine.

Policy
Query

Policy
Decision

@sometorin @OpenPolicyAgent

Decisions are decoupled
from enforcement.

Service

OPA

Policy
(rego)

Data
(json)

Policy
Query

Policy
Decision

Enforcement

@sometorin @OpenPolicyAgent

OPA is a host-local cache
for policy decisions.

Node

Service
OPA

Node

Service
OPA

@sometorin @OpenPolicyAgent

Node

Service
OPA

Node

Service
OPA

Node

Service

Node

Host Failures
OPA

Node

Service

Node

Network Partitions OPA

Network

Network

Fate Sharing

✔ Low latency

✔ High availability

@sometorin @OpenPolicyAgent

Service

OPA

Policy
(rego)

Data
(json)

Policy
Query

Policy
Decision

Policy and data are
stored in-memory.

No runtime dependencies
during enforcement.

Enforcement

@sometorin @OpenPolicyAgent

@sometorin @OpenPolicyAgent

details service
reviews service

ratings service

landing page service

@sometorin @OpenPolicyAgent

Demo: Authorization

landingpage

ratings

details

reviews

Input

{
 "method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"
}

@sometorin @OpenPolicyAgent

Demo: Authorization

landingpage

ratings

details

reviews

Demo Policy

"Employees can see their own reviews and the
reviews of their subordinates."

"Employees can see their own PII. HR can
also see PII."

@sometorin @OpenPolicyAgent

Declarative Language (Rego)
● Is user X allowed to call operation Y on resource Z?
● Which annotations must be added to new Deployments?
● Which users can SSH into production machines?

@sometorin @OpenPolicyAgent

"Employees may read their own reviews and the reviews of
their subordinates."

@sometorin @OpenPolicyAgent

"Employees may read their own reviews [...]"

@sometorin @OpenPolicyAgent

"Employees may read their own reviews [...]"

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "bob"}

@sometorin @OpenPolicyAgent

"Employees may read their own reviews [...]"

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "bob"}

@sometorin @OpenPolicyAgent

allow = true {
 input.method = "GET"
 input.path = ["reviews", "bob"]
 input.user = "bob"
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "bob"}

"Employees may read their own reviews [...]"

@sometorin @OpenPolicyAgent

allow = true {
 input.method = "GET" # OK
 input.path = ["reviews", "bob"] # OK
 input.user = "bob" # OK
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "bob"}

"Employees may read their own reviews [...]"

@sometorin @OpenPolicyAgent

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

"Employees may read their own reviews [...]"

"alice" instead of "bob"

@sometorin @OpenPolicyAgent

allow = true {
 input.method = "GET" # OK
 input.path = ["reviews", "bob"] # OK
 "alice" = "bob" # FAIL
}

"Employees may read their own reviews [...]"

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

"alice" instead of "bob"

@sometorin @OpenPolicyAgent

allow = true {
 input.method = "GET" # OK
 input.path = ["reviews", "bob"] # OK
 "alice" = "bob" # FAIL
}

"Employees may read [...] the reviews of their subordinates."

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

"alice" instead of "bob"

@sometorin @OpenPolicyAgent

"Employees may read [...] the reviews of their subordinates."

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

Data (in-memory)

{"manager_of": {
 "bob": "alice",
 "alice": "janet"}}

@sometorin @OpenPolicyAgent

"Employees may read [...] the reviews of their subordinates."

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = data.manager_of[employee_id]
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

Data (in-memory)

{"manager_of": {
 "bob": "alice",
 "alice": "janet"}}

@sometorin @OpenPolicyAgent

"Employees may read [...] the reviews of their subordinates."

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

allow = true {
 input.method = "GET"
 input.path = ["reviews", "bob"]
 input.user = data.manager_of["bob"]
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

Data (in-memory)

{"manager_of": {
 "bob": "alice",
 "alice": "janet"}}

@sometorin @OpenPolicyAgent

"Employees may read [...] the reviews of their subordinates."

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

allow = true {
 input.method = "GET"
 input.path = ["reviews", "bob"]
 input.user = "alice"
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

Data (in-memory)

{"manager_of": {
 "bob": "alice",
 "alice": "janet"}}

@sometorin @OpenPolicyAgent

"Employees may read [...] the reviews of their subordinates."

allow = true {
 input.method = "GET"
 input.path = ["reviews", employee_id]
 input.user = employee_id
}

allow = true {
 input.method = "GET" # OK
 input.path = ["reviews", "bob"] # OK
 input.user = "alice" # OK
}

Input

{"method": "GET",
 "path": ["reviews", "bob"],
 "user": "alice"}

Data (in-memory)

{"manager_of": {
 "bob": "alice",
 "alice": "janet"}}

@sometorin @OpenPolicyAgent

What about RBAC?

@sometorin @OpenPolicyAgent

RBAC solves XX% of the problem.

@sometorin @OpenPolicyAgent

RBAC is not enough.

"QA must sign-off on images
deployed to the production
namespace."

"Analysts can read client data but
PII must be redacted."

"Restrict employees from accessing
the service outside of work hours."

"Allow all HTTP requests
from 10.1.2.0/24."

"Restrict ELB changes to senior
SREs that are on-call."

"Give developers SSH access to machines
listed in JIRA tickets assigned to them."

"Prevent developers from running
containers with privileged security
contexts in the production
namespace." "Workloads for euro-bank must be

deployed on PCI-certified clusters in
the EU."

@sometorin @OpenPolicyAgent

...but everyone knows RBAC.

@sometorin @OpenPolicyAgent

Implement RBAC with OPA.
Data (in-memory)

bindings:
 - user: inspector-alice
 role: widget-reader
 - user: maker-bob
 role: widget-writer
roles:
 - operation: read
 resource: widgets
 name: widget-reader
 - operation: write
 resource: widgets
 name: widget-writer

@sometorin @OpenPolicyAgent

Implement RBAC with OPA.
Data (in-memory)

bindings:
 - user: inspector-alice
 role: widget-reader
 - user: maker-bob
 role: widget-writer
roles:
 - operation: read
 resource: widgets
 name: widget-reader
 - operation: write
 resource: widgets
 name: widget-writer

allow = true {
 # Find binding(s) for user.
 binding := data.bindings[_]
 input.user = binding.user

@sometorin @OpenPolicyAgent

Implement RBAC with OPA.
Data (in-memory)

bindings:
 - user: inspector-alice
 role: widget-reader
 - user: maker-bob
 role: widget-writer
roles:
 - operation: read
 resource: widgets
 name: widget-reader
 - operation: write
 resource: widgets
 name: widget-writer

allow = true {
 # Find binding(s) for user.
 binding := data.bindings[_]
 input.user = binding.user

 # Find role(s) with permission.
 role := data.roles[_]
 input.resource = role.resource
 input.operation = role.operation

@sometorin @OpenPolicyAgent

Implement RBAC with OPA.
Data (in-memory)

bindings:
 - user: inspector-alice
 role: widget-reader
 - user: maker-bob
 role: widget-writer
roles:
 - operation: read
 resource: widgets
 name: widget-reader
 - operation: write
 resource: widgets
 name: widget-writer

allow = true {
 # Find binding(s) for user.
 binding := data.bindings[_]
 input.user = binding.user

 # Find role(s) with permission.
 role := data.roles[_]
 input.resource = role.resource
 input.operation = role.operation

 # Check if binding matches role.
 role.name = binding.role
}

@sometorin @OpenPolicyAgent

Data (in-memory)

bindings:
 - user: inspector-alice
 role: widget-reader
 - user: maker-bob
 role: widget-writer
roles:
 - operation: read
 resource: widgets
 name: widget-reader
 - operation: write
 resource: widgets
 name: widget-writer

Find bindings and
roles that match
input.

This rule searches over the RBAC data.
allow = true {
 # Find binding(s) for user.
 binding := data.bindings[_]
 input.user = binding.user

 # Find role(s) with permission.
 role := data.roles[_]
 input.resource = role.resource
 input.operation = role.operation

 # Check if binding matches role.
 role.name = binding.role
}

@sometorin @OpenPolicyAgent

Partial Evaluation: rules + data ⇒ simplified rules
allow = true {
 # Find binding(s) for user.
 binding := data.bindings[_]
 input.user = binding.user

 # Find role(s) with permission.
 role := data.roles[_]
 input.resource = role.resource
 input.operation = role.operation

 # Check if binding matches role.
 role.name = binding.role
}

Data (in-memory)

bindings:
 - user: inspector-alice
 role: widget-reader
 - user: maker-bob
 role: widget-writer
roles:
 - operation: read
 resource: widgets
 name: widget-reader
 - operation: write
 resource: widgets
 name: widget-writer

Partial Eval

allow = true {
 input.user = "bob"
 input.resource = "/widgets"
 input.operation = "write"
}

allow = true {
 input.user = "alice"
 input.resource = "/widgets"
 input.operation = "read"
}

@sometorin @OpenPolicyAgent

allow = true { ... }
allow = true { ... }
allow = true { ... }
allow = true { ... }
allow = true { ... }

Many rules (100s, 1000s)

allow = true {
 input.user = "alice"
 input.resource = "/widgets"
 input.operation = "read"
}

OPA builds an index from simplified rules.

input.resource

input.operation

input.user

... ...

"read" "write"

"/widgets"

"alice" "bob"

input.resource
Rule Indexing

Rule Rule

@sometorin @OpenPolicyAgent

OPA uses the index to quickly find applicable rules.

input.resource

input.operation

input.user

Rule

... ...

Rule

"read" "write"

"/widgets"

"alice" "bob"

input.resource

Query

allow

Input

{
 "user": "alice",
 "resource": "/widgets",
 "operation": "read"
}

@sometorin @OpenPolicyAgent

OPA only evaluates applicable rules.

input.resource

input.operation

input.user

Rule

... ...

Rule

"read" "write"

"/widgets"

"alice" "bob"

input.resource

allow = true { ... }
allow = true { ... }
allow = true { ... }
allow = true { ... }
allow = true { ... }

Many rules (100s, 1000s)

allow = true {
 input.user = "alice"
 input.resource = "/widgets"
 input.operation = "read"
}

OPA ignores these.

@sometorin @OpenPolicyAgent

Roles # Bindings Normal Eval (ms) With Partial Eval (ms)

250 250 5.50 0.0468

500 500 11.87 0.0591

1,000 1,000 21.64 0.0543

2,000 2,000 45.49 0.0624

blog.openpolicyagent.org

Partial Evaluation https://goo.gl/X6Qu6u
Rule Indexing https://goo.gl/uoSw3U

https://goo.gl/X6Qu6u
https://goo.gl/uoSw3U

@sometorin @OpenPolicyAgent

"QA must sign-off on
images deployed to the
production namespace."

"Restrict ELB changes to
senior SREs that are on-call."

"Analysts can read client data
but PII must be redacted."

"Give developers SSH access to
machines listed in JIRA tickets
assigned to them."

@sometorin @OpenPolicyAgent

Use OPA to enforce
policy across the stack.

@sometorin @OpenPolicyAgent

It's all just data.
deny {
 is_read_operation
 is_pii_topic
 not in_pii_consumer_whitelist
}

operation: Read
resource:
 name: credit-scores
 resourceType: Topic
session:
 principal:
 principalType: User
 name: CN=anon_producer,O=OPA
 clientAddress: 172.21.0.5

deny {
 not metadata.labels["qa-signoff"]
 metadata.namespace == "prod"
 spec.containers[_].privileged
}

metadata:
 name: nginx-149353-bvl8q
 namespace: production
spec:
 containers:
 - image: nginx
 name: nginx
 securityContext:
 privileged: true
 nodeName: minikube

allow {
 input.method = "GET"
 input.path = ["salary", user]
 input.user = user
}

method: GET
path: /salary/bob
service.source:
 namespace: production
 service: landing_page
service.target:
 namespace: production
 service: details
user: alice

allow {
 score = risk_budget
 count(plan_names["aws_iam"]) == 0
 blast_radius < 500
}

aws_autoscaling_group.lamb:
 availability_zones#: '1'
 availability_zones.3205: us-west-1a
 desired_capacity: '4'
 launch_configuration: kitten
 wait_for_capacity_timeout: 10m
aws_instance.puppy:
 ami: ami-09b4b74c
 instance_type: t2.micro

@sometorin @OpenPolicyAgent

● Complex environment
○ >1,000 services
○ Many resource and identity types
○ Many protocols, languages, etc.

● Key requirements
○ Low latency
○ Flexible policies
○ Ability to capture intent

● Using OPA across the stack
○ HTTP and gRPC APIs
○ Kafka producers
○ SSH (coming soon)

User Study: Netflix

How Netflix is Solving Authorization Across Their Cloud
(KubeCon US 2017)

@sometorin @OpenPolicyAgent

orchestrator

API

ssh

app

host
container

dbcloud

20+ companies using OPA. Financial institutions,
service providers, IT companies, software vendors, etc.

Used across the stack. Microservices, orchestration,
provisioning, host daemons, data layer, security groups, etc.

Bring more use cases. RBAC, ABAC, admission
control, data protection, risk management, rate liming, auditing, etc.

@sometorin @OpenPolicyAgent

Demo

@sometorin @OpenPolicyAgent

Policy decisions should be decoupled
from policy enforcement.

@sometorin @OpenPolicyAgent

Try tutorials at openpolicyagent.org

HTTP API Authorization Admission Control Risk Management

SSH and sudoData Protection

@sometorin @OpenPolicyAgent

Leverage OPA to solve fundamental
policy and security problems.

@sometorin @OpenPolicyAgent

Thank You!

open-policy-agent/opa

Star us on GitHub.

