
Introducing
Thursday, May 3 14:45 - 15:20
Colin Sullivan / colin@nats.io
Waldemar Quevedo / wally@nats.io

What is messaging?

Messaging here means “Message Oriented Middleware”

• Wikipedia
“Message-oriented middleware (MOM) is software or hardware
infrastructure supporting sending and receiving messages between
distributed systems.”

• Ken Klingenstein
 “Middleware is the intersection of the stuff that network engineers
don't want to do with the stuff that applications developers don't want
to do.”

Why does CNCF need
messaging?

• Distributed systems architecture has been disrupted via
decomposition as cloud technology matures.

• Communications is lagging and a technology is needed to
address various use cases:

✓ Multiple messaging patterns bundled into one technology
✓ Location transparency
✓ Decoupling of data producers and consumers
✓ Built-in load balancing

• NATS was created specifically to meet these communication
needs for next generation cloud native applications.

What is NATS?

NATS is a seven year old, production tested, cloud-native
messaging system made for developers and operators who want
to spend more time doing their work and less time worrying about
how to do messaging.

• DNA: Performance, simplicity, security, and availability.
• Built from the ground up to be cloud native
• Common pattern support including request/reply, pub/sub, and load

balanced queue subscribers

History

Created by Derek Collison

Derek has been building messaging
systems and solutions > 25 yrs

Maintained by a highly experienced
messaging team at Synadia

Engaged User Community

Derek Collison
Founder and CEO at Synadia

Founder and former CEO at Apcera
CTO, Chief Architect at VMware
Architected CloudFoundry
Technical Director at Google
SVP and Chief Architect at TIBCO

Overview

• Pure publish/subscribe with common messaging patterns built
on top

• Clustering of servers with built-in auto discovery
• Clients available for over 30 programming languages
• Log based streaming with guaranteed delivery
• Prometheus NATS Exporter
• Kubernetes Operator

Use Cases

NATS is used in a range of technical use cases
• Messaging in the cloud

✓ General messaging
✓ Microservices Transport
✓ Control Planes
✓ Service Discovery

• IoT Messaging
• Mobile and Big Data
• High Fan-out Messaging
• Replacing or Augmenting Legacy Messaging

Users and Adopters

Acadiant | Apcera | Apporeto | Baidu | Bridgevine | Capital One | Clarifai | Cloud Foundry | Comcast | Ericsson | Faber | Fission |
General Electric | Greta | HTC | Logimethods | Netlify | Pex | Pivotal | Platform9 | Rapidloop | Samsung | Sendify | Sensay |

StorageOS | VMware | Weaveworks | Workiva

Contribution Statistics

• 200+ contributors
• 30 public repos

⇢ 50+ releases
⇢ 8000+ GitHub stars across repos

• ~25M NATS server Docker Hub pulls
• ~7M NATS streaming server pulls
• 680+ Slack members
• 20+ releases of the NATS server since June 2014, ~= 5/year

Messaging Patterns

NATS has three built-in patterns:
● Publish/Subscribe

⇢ Publish data to a subject where 1-N subscribers will receive the data.

● Request/Reply
⇢ Send a request message containing a unique reply subject and

responders can send a reply message back only to the responder.

● Load balanced queue subscribers
⇢ Subscribers belong to a group, and the server sends a message to only

one subscriber in the group, effectively load balancing.

Messaging Patterns

NATS DNA

DNA

• Performance and Scalability
• Simplicity
• Security
• Availability

“Just what you need and none of what you don’t.”

Performance and Scalability
Simplicity
Security
Availability

Performance

• Performance is a part of every decision we make
• NATS is optimized to perform and scale

✓ Design for scale
✓ Careful analysis of the fastpath

• Just as important is what NOT to implement
x Message guarantees in core NATS
x Transactions
x Message Schemas
x Last Will and Testament
x Message Groups

Performance

18 Million msgs/sec

Performance and Scalability

Simplicity
Security
Availability

Simplicity

NATS aims for ease of use from installation through operation
• Single binary

⇢ 7 MB docker image
⇢ No external dependencies

• Text-based protocol with only a handful of verbs
• Easy to parse JSON returned from monitoring endpoints
• Straightforward configuration of TLS and credentials

Simplicity (Continued)

• Little configuration
⇢ Clients only require a url and credentials
⇢ Servers use a few command parameters or a single configuration file

• Clustering is automatic
⇢ Configure seed servers and just add servers to grow your cluster
⇢ Supported clients will be notified of cluster topology changes

• Simple and Straightforward API

Simplicity (Go API)

Simple application written in go to
publish a message.

Connect, Publish, and check for
errors.

Simplicity (Java API)

Java is just as simple.

Performance and Scalability
Simplicity

Security
Availability

Security

NATS secures distributed systems through...
✓ TLS
✓ User/Token Based Authentication
✓ Authorization

...update these through configuration reload with zero downtime.

Security

TLS Support
• Configured in the NATS server
• Client Side Certificates
• CA Certificate Support
• Defaults to most secure ciphers
• Override to set ciphers and curve preferences

User Authentication
• Credentials with username/password or token are associated with a

connection
• Bcrypt password protection in configuration files

Security

Authorization
• Permission based roles
• Publish/Subscribe
• Configuration Reload

⇢ Update / Add / Remove TLS Certificates
⇢ Add or remove credentials
⇢ Grant or revoke permissions

The Synadia team is designing a new architecture where no private
keys/passwords are stored on the system.

Performance and Scalability
Simplicity
Security

Availability

Availability

NATS prioritizes the health and availability of the system as a
whole rather than attempting to service any individual client or
server, creating a foundation for stable and resilient systems.

• The NATS dial-tone, always on
• NATS server “selfish optimization”

⇢ Slow consumers and other badly behaving clients are
disconnected

• Full Mesh Clustering of NATS servers
• Self Healing

⇢ Clients and servers automatically reconnect or rejoin a cluster
after failures

Clustering

NATS can grow or shrink a server cluster through auto-discovery
● Dynamically scale a cluster

⇢ Start with a few “seed” servers and add as necessary to scale
⇢ Topology changes are propagated to other servers in the cluster

allowing servers to join the full mesh

● Supported clients are also aware of topology changes
⇢ Internal knowledge of cluster topology is updated
⇢ Automatically fail over to new servers in a cluster

This results in no configuration changes for clients when the cluster
topology changes

Resilience

Self healing clusters and
automatic reconnection

allow for resilience at scale

“Simplicity is prerequisite for
reliability” - Edsger Dijkstra

How badly do I need a
message?

Delivery Modes

What are delivery modes?
● At most once

⇢ No guarantee of delivery - messages can be lost - applications must
detect and handle lost messages

● At least once
⇢ A message will always be delivered, but in certain cases may be

delivered more than once

● Exactly once
⇢ Arguably unnecessary, complex and slow

Delivery Modes

NATS Delivery Modes

Core NATS provides at most once delivery guarantees

NATS Streaming provides at least once delivery guarantees

NATS Streaming

NATS Streaming is a data streaming system powered by NATS
Features include

• At-least-once delivery
• Replay by time or seqno offset
• Last/initial value caching
• Durable subscribers
• Rate matching per subscriber
• Memory, File, or Database storage
• High Availability through fault tolerant or clustered configurations
• Scale through partitioning

Monitoring

Monitoring NATS Servers

• Each server monitored independently
• Simply enable a monitoring port
• Poll an endpoint for metrics:

• http://demo.nats.io:8222/varz
• http://demo.nats.io:8222/connz
• http://demo.nats.io:8222/subsz
• http://demo.nats.io:8222/routez

• Simplicity allows for building complex tooling

http://demo.nats.io:8222/varz
http://demo.nats.io:8222/connz
http://demo.nats.io:8222/subsz
http://demo.nats.io:8222/routez

Monitoring Data

Server monitoring information is JSON formatted:

{
 "server_id": "EiRJABZmVpWQDpriVqbbtw",
 "version": "1.0.6",
 "go": "go1.9.2",
 "host": "0.0.0.0",
 ….
}

Monitoring with nats-top

https://github.com/nats-io/nats-top

https://github.com/nats-io/nats-top

NATS and Prometheus

Browser Prometheus
Server

NATS
Prometheus

Exporter

NATS
Server

NATS
Prometheus

Exporter

NATS
Server

NATS / Prometheus / Grafana

https://github.com/nats-io/prometheus-nats-exporter

Use a visualization tool with
Prometheus and enable
alerts or create rules to take
action on NATS monitoring
data.

https://github.com/nats-io/prometheus-nats-exporter

The Future

Future Plans

• Extended client support for nkeys, public key signatures utilizing
Ed25519

• Cloud provider integrations
• Extensible Security to plug in common or custom

authentication and authorization systems
• Features to connect and bridge clusters of NATS servers to

create a NATS deployment at a global scale, providing
connectivity between millions, if not billions of clients

• Continued work on integrations with other CNCF projects
including additional support for Prometheus and Kubernetes

Contributing

We welcome contributions of all kinds. Some ways to contribute
include:

● Highlight your NATS usage or insights on the NATS blog
● Fix a bug
● Add, fix, or clarify documentation
● Propose or add a feature through a Github PR
● Present your NATS project at meetups

Read more at https://nats.io/documentation/contributing

https://nats.io/documentation/contributing

Thank You!

Questions?

