
 Google Cloud Platform

logo

Kubernetes WG multi-tenancy
Deep Dive

KubeCon Europe 2018
May 4, 2018

(c) Google LLC

 Google Cloud Platform

logo

Kubernetes Security Profile
KubeCon Europe 2018
May 4, 2018

(presenter) David Oppenheimer <davidopp@google.com>, Software Engineer, Google
Work was done by Yisui Hu <yisuihu@google.com>, Software Engineer, Google

(c) Google LLC

 Google Cloud Platform

Improve usability of Kubernetes security/multi-tenancy features

Today, to operate a secure/multi-tenant cluster
• cluster admins need to understand security and Kubernetes deeply
• policy configuration is error-prone, needs tooling to apply reproducibly
• policy configs must be updated as new Kubernetes features are added

Security Profile

 Google Cloud Platform

Create a small menu of versioned, community-curated policy profiles, to enable
turnkey cluster creation with desired security and tenant isolation (everywhere)

kubeadm init --security-profile=default-1.0-1
kubeadm init --security-profile=saas-multitenancy-1.0-1
kubeadm upgrade --security-profile=saas-multitenancy-1.0-1

Security Profile

 Google Cloud Platform

Security Profile

Security Profile

Bootstrapping rules
e.g. command line flags

Cluster-scope
Policy Objects

e.g. PodSecurityPolicy,
ClusterRole

Namespace-scope
Policy Objects
e.g. NetworkPolicy

cluster.yaml
(Cluster API)

kubeadm

kubectl apply

addon
manager

adm. control &
controllers

namespace
initializer

Pluggable
Enforcers

Kubernetes
conformance

tests

Config As Code, API Design
and You

rayc@google.com, Kubecon Europe 2018

Quick overview of config-as-code

● API objects represented as files
● Pipeline/Workflow

a. Edit file, send for review, get approval/commit.
b. Push to CI/CD staging repo
c. Wait for tests to pass and the push to source-of-truth repo
d. CI/CD invokes config management tool
e. Config management tool calls platform APIs to reify changes to platform
f. Optional: CI/CD may repeat steps c. thru e. Allowing slow rollout, deployment to staging then

prod, etc.

Where things go wrong

● Errors at the last stage of the pipeline are difficult to deal with.
○ User sees CI/CD tool error wrapping a config management tool error wrapping the platform API

error.

● Source repo now differs from running config.
○ These must be manually dealt with and many config management systems are not able to

reconcile platform state with repo state.
○ Without diligence, these differences continue to exist onward.

Causes

Config management tools validation != platform API validation

● APIs and config management tools have to be in lock step which is hard.
● Pipelines that aim to test and validate separate the user from the actual

deployment and reduce the ability to react quickly.

Approach

Goal: config management validation == platform API validation

● Platform API authors should make their validation code portable.
○ Release tools that can be run as pre-commit hooks.
○ These tools use the *same* validation code as the API so they rev together.
○ For complex validations offer dry-run/simulation modes that be run with lower privilege.

● Validation code should give very explicit errors on what is wrong with links to
documentation describing requirements.

● Through this approach, human errors are caught before the initial commits.
● CI/CD pipeline is there to ensure pre-commit hooks have run.

Tenant Operator
Design Sketch: CRD

Lutz Behnke (lutz.behnke@haw-hamburg.de)
Christian Hüning (christianhuening@gmail.com)

Tenant Operator: Motivation

● Shared implementation for common functionality
○ Monitor resource use by tenant
○ Enforce limits (CPU, Mem, net Bandwidth, API Req/sec, # of declared objects)

● Partition concerns between common func and organisation specific
○ CRD represents leaf in arbitrary complex resource allocation schema, specific to each org.
○ Example: Current K8s-Gitlab-Integrator -> Gitlab specific implementation + TenantOp to

map settings into actionable K8s configuration..

● Make opinionated behaviour explicit / configurable

Intended Mode of Operation

● External management system creates Tenant CRDs
○ That’s your Source of Truth (company IDM, Gitlab, Github etc.)

● Tenant Operator + TenantResourceQuota admission controller enforce
resource limits.

Definition: Tenant

A Tenant consists of a set of namespaces in which any account with sufficient
permissions may create Kubernetes objects. The number of these objects and
their resources consumption are totaled over all namespaces of a tenant.

For each metric (CPU, mem, # of objects, etc.) a limit may be set either per
namespace or for the total per tenant.

Note: Limits in specific namespaces are not part of the Tenant Operator as they can already be
enforced (e.g. the LimitRanger).

Tenant CRD Contents

● Unique name of the tenant.
● A list of namespaces.

○ each namespace may have an external name
● Resource quotas for resources. These should at least include

○ Cores
○ Memory
○ API storage volumes
○ Requests per time unit
○ Number of objects
○ PodBandwidthResources

● Optionally it may contain a map of user names and roles
● Future: Time to live for object, until it is deleted.

Tenant Controller Docs:

Multi tenant kubernetes today on HUAWEI CLOUD
@kevin-wangzefeng

The way we use:
● HUAWEI COULD Container instance (serverless container) service with k8s API exposed to end user.
● Currently limited preview.

Tenant concept
● One namespace per tenant now
● no extra explicit tenant (API) definition in k8s.

Namespace
● Name generated by the platform (chosen solution).Or make the name historical unique, if allow end users to indicate name.

(Imagine creating an avatar/character in a MMOG)
● Default quota set by CCI controller

API access
● k8s components talk to api server directly, end users and external clients talk to API-gateway
● RBAC and API rate limiting per tenant for external requests, enforced in API-gateway

Node
● Managed nodes, end user no access to the machine
● Secured container as container runtime

(continued)

Network
● Network API as CRD
● one network per namespace
● huawei container network implementation, l2 isolation
● Not blocking pod creation even network takes some time to be ready.

Storage
● Something alternative to emptydir introduced. Instead of evicting when exceeds limit, prevent from using more than claimed

Open issue: Pod up time, how to deal with upgrading
● kubelet inline upgrade, containers should no be restarted nor recreated
● os upgrade make node down. pod needs to be rrescheduled

Open issue: Root scope API access for end user
● CRD. Operator as plugin
● PV API. End user own the volumes in EVS, but cannot access correspond ing PV object.

