
Making Big Data Processing Portable.
The Story of Apache Beam and gRPC
Ismaël Mejía. @iemejia

Who am I?

2

@iemejia
Software Engineer
Apache Beam PMC / Committer

ASF member

Integration Software
Big Data / Real-Time
Open Source / Enterprise

We are hiring !

New products

3

4

Introduction: Apache Beam

Apache Beam origin

MapReduce

BigTable DremelColossus

FlumeMegastoreSpanner

PubSub

Millwheel
Apache
Beam

Google Cloud
Dataflow

Apache Beam is a unified
programming model
designed to provide
efficient and portable data
processing pipelines

What is Apache Beam?

7

Beam Model: Generations Beyond MapReduce

Improved abstractions let you focus on your
application logic

Batch and stream processing are both
first-class citizens -- no need to choose.

Clearly separates event time from processing
time.

8

Processing Time vs. Event Time

9

Beam Model: Asking the Right Questions

What results are calculated?

Where in event time are results calculated?

When in processing time are results materialized?

How do refinements of results relate?

The Beam Model: What is Being Computed?

PCollection<KV<String, Integer>> scores = input

 .apply(Sum.integersPerKey());

scores = (input

| Sum.integersPerKey())

The Beam Model: What is Being Computed?

Event Time: Timestamp when the event happened

Processing Time: Absolute program time (wall clock)

The Beam Model: Where in Event Time?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2)))

 .apply(Sum.integersPerKey());

scores = (input

 | beam.WindowInto(FixedWindows(2 * 60))

 | Sum.integersPerKey())

The Beam Model: Where in Event Time?

Event Time

Processing
Time 12:0212:00 12:1012:0812:0612:04

12:0212:00 12:1012:0812:0612:04

Input

Output

● Split infinite data into finite chunks

The Beam Model: Where in Event Time?

The Beam Model: When in Processing Time?

PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()))

 .apply(Sum.integersPerKey());

scores = (input

 | beam.WindowInto(FixedWindows(2 * 60)

 .triggering(AtWatermark())

 | Sum.integersPerKey())

The Beam Model: When in Processing Time?

The Beam Model: How Do Refinements Relate?
PCollection<KV<String, Integer>> scores = input

 .apply(Window.into(FixedWindows.of(Duration.standardMinutes(2))

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(Duration.standardMinutes(1)))

 .withLateFirings(AtCount(1)))

 .accumulatingFiredPanes())

 .apply(Sum.integersPerKey());

scores = (input

 | beam.WindowInto(FixedWindows(2 * 60)

 .triggering(AtWatermark()

 .withEarlyFirings(AtPeriod(1 * 60))

 .withLateFirings(AtCount(1))

 .accumulatingFiredPanes())

 | Sum.integersPerKey())

The Beam Model: How Do Refinements Relate?

19

Customizing What Where When How

3
Streaming

4
Streaming

 + Accumulation

1
Classic
Batch

2
Windowed

Batch

Beam Pipeline

PTransform

PCollection

20

GroupByKey
CoGroupByKey

Combine -> Reduce
Sum
Count
Min / Max
Mean
...

ParDo -> DoFn
MapElements
FlatMapElements
Filter

WithKeys
Keys
Values

Windowing/Triggers

Windows
FixedWindows
GlobalWindows
SlidingWindows
Sessions

Triggers
AfterWatermark
AfterProcessingTime
Repeatedly

...

Element-wise Grouping

Apache Beam - Programming Model

21

22

The Apache Beam Vision

1. End users: who want to write pipelines
in a language that’s familiar.

2. SDK writers: who want to make Beam
concepts available in new languages.

3. Runner writers: who have a
distributed processing environment
and want to support Beam pipelines

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

Runners

Google Cloud
Dataflow

Apache FlinkApache SparkApache Apex

Ali Baba
JStorm

Apache Beam
Direct Runner

Apache Storm

WIP

Apache Gearpump

Runners “translate” the code into the target runtime

* Same code, different runners & runtimes

Hadoop
MapReduce

IBM Streams Apache Samza

24

Awesome but...

● If I run a Beam python pipeline on the
Spark runner, is it translated to
PySpark?

● Wait, can I execute python on a Java
based runner?

● Can I use the python Tensorflow
transform from a Java pipeline?

● I want to connect to Kafka from
Python but there is not a connector
can I use the Java one?

No

Beam Model: Fn Runners

Apache
Flink

Apache
Spark

Beam Model: Pipeline Construction

Other
LanguagesBeam Java

Beam
Python

Execution Execution

Cloud
Dataflow

Execution

25

Portability API

26

How do Java-based runners do work today?

SDK Runner

Client

Job
Master

Cluster

Executor
(Runner)

Worker

Worker

Executor / Fn API

Worker
Pipeline

UDF

Portability API Design

Goal:
Execute user code from 'any' language in every runner.

Challenges:
Support existing SDKs (Java / Python)
Provision of expected execution environment
Performance. Low overhead
Support Multiple language data representation
Easy to evolve Executor

(Runner)

Docker
 Container

Worker

SDK Harness
UDF

27

Executor
(Runner)

Worker

UDF

Portability API Design

28

Python Fn

Python Fn

gRPC Source

gRPC sink

Portability APIs

Well-defined, language-neutral data structures and protocols between the SDK
Harness and runner

Runner API: Pipeline language agnostic representation

Job API: Job submission and management protocol.

Fn API: Protocols between runner and SDK harness

● Efficient serialization format
(Protocol buffers)

● Multiple language support

● Simple service definition

● Network performance

● Multiplexing (via HTTP/2)

● Rich communication models:
Subscriptions
Bidirectional streaming

Portability Framework

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job

Master

Cluster

Executor
(Runner)

Docker
 Container

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

SDK Harness
Pipeline
protobuf UDF

Runner API

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job

Master

Cluster

Executor
(Runner)

Docker
 Container

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

SDK Harness
Pipeline
protobuf UDF

Runner API

Represent Beam model via Protobuf

message Pipeline {

 Components components = 1;

 ...

}

 oneof root {

 Coder coder = 2;

 CombinePayload combine_payload = 3;

 SdkFunctionSpec sdk_function_spec = 4;

 ParDoPayload par_do_payload = 6;

 PTransform ptransform = 7;

 PCollection pcollection = 8;

 ReadPayload read_payload = 9;

 SideInput side_input = 11;

 WindowIntoPayload window_into_payload = 12;

 WindowingStrategy windowing_strategy = 13;

 FunctionSpec function_spec = 14;

 }
https://s.apache.org/beam-runner-api

https://s.apache.org/beam-runner-api

Job API

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job

Master

Cluster

Executor
(Runner)

Docker
 Container

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

SDK Harness
Pipeline
protobuf UDF

Job API

Job submission and management protocol

service JobService {

 rpc Prepare (PrepareJobRequest) returns (PrepareJobResponse);

 rpc Run (RunJobRequest) returns (RunJobResponse);

 rpc GetState (GetJobStateRequest) returns (GetJobStateResponse);

 rpc Cancel (CancelJobRequest) returns (CancelJobResponse);

 // Subscribe to a stream of state changes of the job

 rpc GetStateStream (GetJobStateRequest) returns (stream GetJobStateResponse);

 // Subscribe to a stream of state changes and messages from the job

 rpc GetMessageStream (JobMessagesRequest) returns (stream JobMessagesResponse);

}

https://s.apache.org/beam-job-api

https://s.apache.org/beam-job-api

Fn API

https://s.apache.org/beam-fn-api

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job

Master

Cluster

Executor
(Runner)

Docker
 Container

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

SDK Harness
Pipeline
protobuf UDF

https://s.apache.org/beam-fn-api

Fn API

Fn API allows a runner to invoke SDK-specific user-defined functions
Interaction between Runner and SDK Harness

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

https://s.apache.org/beam-fn-api

https://s.apache.org/beam-fn-api

Fn API - Artifact

SDK

Job Server

Artifact
Staging

Staging
Location

DFS

Client

Job

Master

Cluster

Executor
(Runner)

Docker
 Container

Worker

Worker

Executor / Fn API

Provision Control Data

Artifact
Retrieval State Logging

Worker

Artifacts

SDK Harness
Pipeline
protobuf UDF

Fn API - Artifact

Two services: Stage/Retrieve artifacts for use in a Job

service ArtifactStagingService {

 rpc PutArtifact(stream PutArtifactRequest) returns (PutArtifactResponse);

 // Commit the manifest for a Job. All artifacts must have been uploaded

 rpc CommitManifest(CommitManifestRequest) returns (CommitManifestResponse);

}

service ArtifactRetrievalService {

 rpc GetManifest(GetManifestRequest) returns (GetManifestResponse);

 rpc GetArtifact(GetArtifactRequest) returns (stream ArtifactChunk);

}

message ArtifactMetadata {

 string name = 1;

 uint32 permissions = 2;

 string md5 = 3;

}

Fn API - Provision

Provide runtime provisioning information to the SDK harness

service ProvisionService {

 rpc GetProvisionInfo(GetProvisionInfoRequest) returns (GetProvisionInfoResponse);

}

message ProvisionInfo {

 string job_id = 1;

 string job_name = 2;

 string worker_id = 5;

 google.protobuf.Struct pipeline_options = 3;

 Resources resource_limits = 4;

}

message Resources {

 Memory memory = 1;

 Cpu cpu = 2;

 Disk semi_persistent_disk = 3;

}

Fn API - Data

Moves data between the runner and the SDK Harness

Fn API - Data

Protobuf message limitation 2 or 4 GB depending on language. Beam asumes < 2GB

service BeamFnData {

 rpc Data(stream Elements) returns (stream Elements);

}

message Elements {

 message Data {

 string instruction_reference = 1;

 Target target = 2;

 bytes data = 3;

 }

 repeated Data data = 1;

}

Fn API - State

Supports user state, side inputs, and Group by Key re-iteration

Fn API - Control

Tell SDK Harness what UDFs to execute and when to do it.

Fn API - Control

Describes the work that a SDK harness is meant to do

service BeamFnControl {

 rpc Control(stream InstructionResponse) returns (stream InstructionRequest);

}

message InstructionRequest {

 string instruction_id = 1;

 oneof request {

 RegisterRequest register = 1000;

 ProcessBundleRequest process_bundle = 1001;

 ProcessBundleProgressRequest process_bundle_progress = 1002;

 ProcessBundleSplitRequest process_bundle_split = 1003;

 }

}

Fn API - Control - Bundle Processing

Fn API - Control - Bundle Processing

Fn API - Logging

Associate SDK Harness log entries
with the runner

service BeamFnLogging {

 rpc Logging(stream LogEntry.List)

 returns (stream LogControl);

}

message LogEntry {

 message List {

 repeated LogEntry log_entries = 1;

 }

 message Severity {

 enum Enum {

 UNSPECIFIED = 0;

 TRACE = 1;

 DEBUG = 2;

 //...

 }

 }

 Severity.Enum severity = 1;

 google.protobuf.Timestamp timestamp = 2;

 string message = 3;

 // ...

}

Advantages

Isolation of user code
Isolated configuration of user environment
Multiple language execution
Mix user code in different languages

Issues

Performance overhead (15% in early evaluation). via extra RPC + container
Extra component (docker)
A bit more complex but it is the price of reuse

50

Current status and future work

● Universal Local Runner (Local runner)
● Rewrite of the Flink runner to support the Portability API
● Python wordcount runs on Apache Flink runner
● and a newcomer also runs on the Apache Flink runner ...

Current status

Go SDK

func main() {

 p := beam.NewPipeline()

 s := p.Root()

 lines := textio.Read(s, *input)

 counted := CountWords(s, lines)

 formatted := beam.ParDo(s, formatFn, counted)

 textio.Write(s, *output, formatted)

 if err := beamx.Run(context.Background(), p); err != nil {

 log.Fatalf("Failed to execute job: %v", err)

 }

}

First user SDK completely based on Portability API.

52

Ongoing / Future work

● Full Beam model support (State, Windows, Triggers, etc)
● Metrics
● Invoke IO connectors between languages
● Multiple language pipelines
● Ergonomics (aka User/Dev eXperience)
● Production-readiness
● Other runners: Spark, ...
● Validation tests 'our TCK'

https://s.apache.org/beam-fn-state-api-and-bundle-processing
https://s.apache.org/beam-fn-api-metrics
https://s.apache.org/beam-mixed-language-pipelines

Contribute

You are welcome to contribute!

● Try the portability work and help us report and fix issues.
● Multiple Jiras that need to be taken care of.
● Improve documentation
● New feature requests, new ideas.
● More SDKs (more languages) .net anyone please, etc
● More runners, improve existing, a native go one maybe?.

Not only for Portability, Beam is in a perfect shape to jump in.

First Stable Release. 2.0.0 API stability contract (May 2017)
Current: 2.5.0 (vote starting soon)

A vibrant community of contributors + companies:
Google, data Artisans, Talend, Ali Baba, Lyft, Yours?

 Exciting Upcoming Features:

Portability, been able to run multiple languages on other runners

Go SDK, finally gophers have the right to Big Data
IO Connectors based on Splittable DoFn
Schema-aware PCollections and SQL improvements
New Libraries: Perfect moment to contribute yours !

Contribute to Apache Beam (May 2018)

Greetings

● Lukasz Cwik
● Thomas Groh, Vikas Kedigehalli, Sourabh Baja
● Ben Sidhom, Axel Magnuson, Daniel Oliveira
● Kenneth Knowles, Henning Rohde, Valentyn Tymofieiev (Google)
● Aljoscha Krettek (data Artisans)
● Thomas Weise (Lyft)
● The rest of the Beam community in general for being awesome.

56
* The nice slides with animations were created by Tyler Akidau and Frances Perry and used with authorization.

https://beam.apache.org/contribute/presentation-materials/

References

Portability

Portability Framework

Apache Beam
 https://beam.apache.org

Join the mailing lists!
user-subscribe@beam.apache.org
dev-subscribe@beam.apache.org

Follow @ApacheBeam on Twitter

https://beam.apache.org/contribute/portability/
https://beam.apache.org

58

Thanks

