
Inside Kubernetes Resource
Management (QoS)

Mechanics and Lessons from the Field

Michael Gasch
Application Platform Architect (VMware)

@embano1

2Confidential � ©2018 VMware, Inc.

3Confidential � ©2018 VMware, Inc.

4

Only a Part of a Bigger Picture

Agenda

5

​A Small Mistake and its Consequences

Operating System Basics

​Kubernetes Resource QoS Deep Dive

​Best Practices from the Field

​QnA

​Appendix/Resources

6

A Small Mistake and its
Consequences

7

A Small Mistake…

WHOOPS !

ku
be

rn
et

es
/in

gr
es

s-
ng

in
x

8

During Admission, this Pod might be
• Rejected (ResourceQuota)
• Modified (LimitRanger)

After Creation, this Pod might
• Not get enough Resources (“Starvation”)
• Negatively affect other Pods or Host Services (“Noisy Neighbor”)
• Be evicted first by the Kubelet
• Be OOM_killed first (OutOfMemory)

In General, this Pod does not have predictable Runtime Behavior.
Depending on your Workload, that might be OK though.

…and its Consequences

9Confidential � ©2018 VMware, Inc.

10Confidential � ©2018 VMware, Inc.

Some User Stories

11

Operating System Basics

12

What happens when you “docker run”?

Kernel Mode

Cgroups

Namespaces

Security Capabilities

Scheduler

Syscall

task_struct

…

Scheduling Entity (se)

“running”

syscall.Exec(ENTRYPOINT/CMD)*

A Structure in Kernel
Memory. The Kernel has
no Notion of a
“Container”. It’s yet
another Executable.

User Mode

Docker Engine

ContainerCreate()

* After Container Sandbox Initialization
(nsenter.go/nsexec.c)

sched_class
fair.c (CFS)

13Confidential � ©2018 VMware, Inc.

14

“Fairness” != “Fairness”
The Linux Completely Fair Scheduler (CFS)

CPU

Container
"A"

task_struct
#1

(Shares 1024)

Container
"B"

task_struct
#5

(Shares 1024)

50% CPU 50% CPU

15

“Fairness” != “Fairness”
The Linux Completely Fair Scheduler (CFS)

CPU

Container
"A"

task_struct
#1

(Shares 1024)

task_struct
#2

(Shares 1024)

task_struct
#3

(Shares 1024)

task_struct
#4

(Shares 1024)

Container
"B"

task_struct
#5

(Shares 1024)

Each Task gets
20% CPU

(5120 Shares / 5) 80% CPU 20% CPU

16

​Mechanism for Task Grouping, Accounting and Resource Management (Controllers)

Enter Linux Control Groups (Cgroups)
The Foundation of Resource QoS

CPU

Container
"A"

task_struct
#1

task_struct
#2

task_struct
#3

task_struct
#4

Container
"B"

task_struct
#5

Shares 1024 Shares 1024

50% CPU 50% CPU

17

​Example Controllers
• CPU
• Memory
• IO

​Use Cases
• Prioritize Workloads (e.g. CPU Usage)
• Limit Resources (e.g. Memory, PIDs)
• Accounting

​Interface and Hierarchy typically mounted to /sys/fs/cgroup

​Two Versions exist in the Linux Kernel (v1 and v2 Interface)
• v1 is still the Default used by all (?) Container Runtimes

Enter Linux Control Groups (Cgroups)
The Foundation of Resource QoS

18

Docker made it easy to use Cgroups
But DO understand the --cpus and -m (Memory) Flags!

C
on

ta
in

er
 V

ie
w

19

Docker made it easy to use Cgroups
Under the Hood

-m 200m

Not Clock Speed (GHz)!
Can vary, e.g. CPU Throttling,
different Host Hardware, etc.

Not a “Guarantee”,
just a Weight Value!
(Default = 1024)

C
on

ta
in

er
 H

os
t

V
ie

w

--cpus 1

Hard Limit, i.e. no
Reservation!

20

From the Linux Kernel View, Containers are “normal” Processes (task_struct)

The default Linux Kernel Scheduler Algorithm is “Completely Fair”

​Containers, using Cgroups and Namespaces, provide a certain Level of Prioritization and
Isolation on the Host

​But how to do it at Cluster Scale?

Recap
Operating System Basics

21

Kubernetes Resource QoS
Deep Dive
(Kubernetes v1.10)

22

Kubernetes Resource QoS Use Cases

Kubernetes Cluster

Efficiency

Fairness

Quotas

Prioritization

Isolation

Kubernetes Cluster
is the

QoS Boundary

23

Specification Admission Scheduling Enforcement

QoS Lifecycle, Admission and Enforcement
30k Feet View

Pod Spec K8s Master Node (Kubelet)

Developer Cluster Ops Developer

Cluster Ops

24

​The following Resources can be specified
• Stable

– cpu (in absolute MilliCPUs or CPU Fractions, e.g. 0.5)
– memory (in Bytes, or with Suffixes, e.g. M, Mi, etc.)

• Beta
– hugepages-<size>
– ephemeral-storage
– DevicePlugins (e.g. nvidia.com/gpu)

• Custom
– Extended Resources (replaced Opaque Integer Resources, OIRs), e.g. Licences, Dongles, etc.

Supported QoS Resources in the Pod Spec
Specification

25

​For each Resource, Requests (R) and Limits (L) can be specified
• Those are specified at the Container Level (http://bit.ly/2ExayUD)
• Only cpu, memory and ephemeral-storage allow for Overcommitment
• Read-only Fields (after Creation)

​What about Sysctls? https://bit.ly/2HRbqAK

​And IO/NET Bandwidth? http://bit.ly/2F9gC2

Supported QoS Resources in the Pod Spec
Specification

26

Supported QoS Resources in the Pod Spec
Example

Specification

When Requests are omitted:
Request == Limits

Po
d.

ya
m

l

27

​To control/limit Resource Usage, Namespaces can have Resource Quotas specified
• Enforced during Admission via “ResourceQuota” Admission Controller
• Note:

– Logical Constraint, i.e. not aware of Cluster Capacity/Usage
– Pods must adhere to Quota Specification, otherwise will be rejected
– Running Pods are unaffected by Quota Changes

• Details: http://bit.ly/2GBcloc

​Defaults Requests/Limits can be enforced via “LimitRanger” Admission Controller

​There is currently no Inter-Namespace Resource Sharing (static Partitioning)

Namespace QoS Quotas and Defaults
Admission

Borrow?

NS#1 NS#2

28

​The Scheduler tracks “Node Allocatable” Resources (“NodeInfo” Cache)
• Note: this is not actual Usage
• “Allocatable” typically is < “Node Capacity” (http://bit.ly/2opSBw0)
• Internals: http://bit.ly/2yRHTGo

How QoS Affects Scheduling
Scheduler’s View of a Node

Scheduling

Sys
Reserved

Kubelet
Reserved

Hard Eviction
Threshold Allocatable

Calculation of “Node Allocatable” Resources on each Node (Kubelet)

29

Scheduling Algorithm (Predicates “must” & Priority “Ranking”) and Node Condition
influence Pod Placement (Node Binding)
• Note:

– No Overcommit for “Requests” (Sum_Req <= Node Allocatable)
– Priority Queue not active by default (alpha) -> critical Pods could be blocked after Host/Rack Failure
– Limits not taken into Account currently (Placement might not be optimal)
• Alpha Feature Gate (https://bit.ly/2qp3dgq)

– Prior v1.10: DaemonSets are not scheduled by kube-scheduler (alpha in v1.10)

How QoS Affects Scheduling
Scheduling Algorithm

Scheduling

Sys
Reserved

Kubelet
Reserved

Hard Eviction
Threshold Allocatable

Scheduling of Pods with Requests and “Node Allocatable”

Pod
Requests

Pod
Requests

Pod
Requests

30

​Cgroups are used to map Pod CPU and Memory Resources
• Note: Two Cgroups Drivers exist (cgroupfs [default], systemd)

How QoS is enforced at the Node
Pod Creation

Enforcement

Important
To be precise, Kubelet Heuristics for Cgroups Hierarchy Calculations are
much more complex than depicted here (https://bit.ly/2HwbIgp).

ESXi (Host)

OS (Linux Kernel)

Kubernetes (Pod Manifest)

CPU Requests
CPU Limits

CPU Shares
CPU Quota
CPU Period

CPU Shares
CPU Reservation
CPU Limit

MEM Requests
MEM Limits

OOM Score Adj.
MEM Limits

MEM Shares
MEM Reservation

MEM Limit

31

How QoS is enforced at the Node
Pod Creation (Example)

Enforcement
K

ub
el

et
 V

ie
w

cpu=1

memory=200Mi

32

​Classes calculated based on CPU and Memory Resource Specifications (Requests/Limits)
• Details: http://bit.ly/2sO2KYX

QoS Classes
Implicit Definition from Pod Specification

CPU MemoryClass

R(equests)

L(imits)

R

L

Pod
(1 Container)

Best Effort
0=R=L

(all Containers)

R

L

R

L

Pod
(1 Container)

Guaranteed
0<R=L

(all Containers)

R

L

R

L

R

L

R

L

Pod
(2 Containers)

Burstable
0<R<=(L)
(at least

one Container)

Enforcement

QoS Examples

K
ubelet V

iew

33Confidential � ©2018 VMware, Inc.

34

QoS Classes and Node Behavior
Response to “Kubelet Out of Resource” Conditions

Enforcement

​Resources are either compressible (CPU) or uncompressible (Memory, Storage)
• Compressible = Throttling (Weight: cpu.shares)
• Uncompressible = Evict (Kubelet) or OOM_kill (“OutOfMemory Killer” by Kernel)

​Kubelet Eviction Thresholds can be “hard” (instantly) and “soft” (allow Pod Termination
Grace Period)
• Note:

– If Kubelet cannot react fast enough, e.g. Memory Spike, Kernel OOM kills Container
• There’s no Coordination between Eviction and OOM Killer (Race Condition possible)

– Kubelet related File System Thresholds also trigger Eviction (after unsuccessful Reclamation)
– Kubelet signals Pressure to API Server (honored by Scheduler)

Sys
Reserved

Kubelet
Reserved

Hard Eviction
Threshold AllocatableSoft Eviction

Threshold

Eviction Thresholds

35

QoS Classes and Node Behavior
Eviction Order

Enforcement

​Out of Resource Eviction Order (descending)
• Kubernetes before v1.9:

– Largest Consumer relative to Request starting from QoS Best Effort -> Burstable -> Guaranteed
• Kubernetes v1.9 and above:

– “Usage > Requests?” -> Pod Priority -> Usage - Requests
• Note:

– Even “Guaranteed” Pods can be evicted
– DaemonSets and other critical Pods are just Pods from the View of the Kubelet/OS (Pod Priority helps)
– Details: https://bit.ly/2HuiG6k

36

Pod
Manifest

API
Admission

Control
Scheduler Kubelet Container

Runtime Kernel

QoS Lifecycle, Admission and Enforcement
Details

• Declare
desired
State (QoS
Resources,
Requests,
Limits)

• Admission

• Mutation

• Admission

• Node
Allocatable
Cache

• Node
Condition,
Filtering &
Ranking

• Pod Priority
and
Preemption

• Scheduler
Policy

• Admission

• Cgroup
Driver &
Hierarchy

• CPU
Manager

• Eviction
Policies and
Enforce-
ment

• Metrics

• Node
Status

• Pod Cgroup
Config incl.
OOM Score

• Verify
Swap
disabled

• Enforce
Cgroup
Config

• Metrics

• Pod and
Container
Lifecycle

• CFS Period,
Quota,
Shares

• CPU/MEM
Sets

• Memory
Limits

• Notification
Hooks

• OOM Killer

• Scheduling

• Sysctls

37

But the Community wants more!
Kubernetes Resource QoS gets better (and more complex) with every Release

Horizontal
Pod Auto-

Scaler
Metrics
Server

System
Daemons

Pod
Priority

CPU
Manager

Multi-
Scheduler

Critical
Add-Ons

Static Pods

Vertical
Pod Auto-

Scaler

Cluster
Auto-
Scaler

De-
scheduler

Arbitrator Cluster
Capacity

Addon-
Resizer

38

Best Practices from the Field

39

​If in doubt start with “guaranteed” QoS Class for your Workloads (i.e. no
Overcommitment)

​Enable Quotas and enforce sane Defaults (ResourceQuota, LimitRanger)

​Protect critical (System) Pods (DaemonSets, Controllers, Master Components)
• Apply QoS Class “burstable” or “guaranteed” with sufficient Memory Requests (OOM Score

Adj.)
• Reserve Node Resources with Labels/Selectors (if Scheduler Priority not active)
• PriorityClasses, hopefully Beta in v1.11, will significantly help

​Embed QoS into your CI/CD Process
• Should be Part of all Stages
• Benchmarking/ Stress Tests for correct Values and/or consider VPA (Borg Autopilot) J

#1 Start using it!

40

​Align Kubernetes QoS to underlying Infrastructure QoS (e.g. VM Reservations/Limits,
Burstable Cloud Instances)

Monitor your Cluster and Resource Usage
• CPU and Memory, but also

– Kernel Resources (Pids, Ports, Open File Handles, Sockets, etc.)
– File Systems (Utilization, iNodes)
– I/O (NET, Disk)
– VM Instances (Cloud Provider Metrics)
– Cgroups Statistics
– Quotas
– Apply RED/USE Method

• Typical Issues:
– Long running Pods filling up File Systems (Log, temp)
– Unbounded Pods (no Memory Limits) killing Critical Pods (OOM Score Adj.)

#2 It’s only Part of the QoS Equation

41

​Many Language Runtimes, e.g. JRE, Go, .NET, etc. have no/limited Cgroups Awareness,
i.e.
• Might see all Host CPUs
• Might see full Host Memory
• Behavior might be different between Language Runtime Versions

​Leads to incorrect Tuning of:
• Heap Size, e.g. -Xmx in Java (http://bit.ly/2HG2C0V)
• Thread Pool Size, e.g. GOMAXPROCS in Go (http://bit.ly/2sKZcH6)
• GC Tuning, e.g. Size of Generation Spaces/ Number GC Threads in .NET (http://bit.ly/2GGzOEb)

​Leads to
• Inefficient CPU/Memory Consumption
• Lower Performance
• Crashes

#3 Code and Language Runtime
Language Runtimes and Cgroups – The Issue

42

​Check Language Spec and use latest Version (if possible)
• Java 10 made big Improvements for Container Support

​Align Heap (+Overhead)/GC/Thread Parameters
to Pod Resources

​Could be done via
• Templating Engine
• Environment Variables
• ConfigMap
• Downward API (https://bit.ly/2qAn3pe)

#3 Code and Language Runtime (continued)
Language Runtimes and Cgroups – Remediation

Downward API Example

43

Fine-tune Kubelet (Node)
• --eviction-hard/soft (and related Values like Grace Periods)
• --fail-swap-on (default in recent Versions)
• --kube-reserved/--system-reserved for critical System and Kubernetes Services
• Notes:

– NOT (!) intended for Pods/Workloads
– Profile Service and OS Behavior before “enforcing” (optional), Risk of unintended OOMs

Use CPU Manager for Latency-critical Workloads (https://bit.ly/2vewWO6)

Use ”burstable” QoS w/out CPU Limit for Performance-critical Workloads
• Github Discussion: https://bit.ly/2qBc6Ui
• PriorityClasses, hopefully Beta in v1.11, will significantly help

#4 Advanced Tuning

44

​Make sure your Kernel has full Cgroups support compiled in and enabled
• Debian/Ubuntu https://dockr.ly/2H3ZEma

​Windows is not Linux ! (http://bit.ly/2FpNDaR)

​Disable Swap (required by Kubelet for proper QoS Calculation)

Always remember that you’re running on a shared Kernel
• https://sysdig.com/blog/container-isolation-gone-wrong/
• https://hackernoon.com/another-reason-why-your-docker-containers-may-be-slow-

d37207dec27f
• https://blog.hasura.io/debugging-tcp-socket-leak-in-a-kubernetes-cluster-99171d3e654b
• Mixing VM and Container-Level Isolation is powerful

Stay current with Releases (Kubernetes, Container Runtime, OS/Kernel)
• Changelogs and Design Docs (http://bit.ly/2CFY9HX) are your Friend

#5 OS and Kernel

Thank You!

@embano1

46

Appendix

47

​Kubernetes Quality of Service (QoS) offers powerful primitives for resource management,
that is workload prioritization, fairness and efficiency. But it's also a complex topic to
understand and get right in production, e.g. if you are new to this topic or running highly
dynamic and distributed systems.

​Getting the most value out of a Kubernetes cluster requires utilizing the features provided
to categorize and prioritize your workloads. We'll look at how Kubernetes provides this
functionality through its QoS implementation. Both, from an end-user's perspective but
also digging into the mechanics.

​The work doesn't stop there though. This talk will also explore techniques on how to tune
your application using best practices and lessons learned in the field. Finally, we'll provide
community resources and an outlook about taking QoS to the next level in your cluster.

Session Abstract

48

Wikipedia

“ Quality of service (QoS) is the
description or measurement of the
overall performance of a service,
such as […] a cloud computing
service, particularly the
performance seen by the users
[…].

49

Wikipedia

“ In computing, scheduling is the
method by which work specified
by some means is assigned to
(finite) resources that complete
the work.

50

​Configure QoS for Pods
• https://groups.google.com/forum/#!msg/kubernetes-sig-

scheduling/kMG7yfONwY4/Nx3abXuNAAAJ

​Configure Resource Quotas for a Namespace
• https://kubernetes.io/docs/tasks/administer-cluster/quota-memory-cpu-namespace/

​Pod Priority and Preemption
• https://kubernetes.io/docs/concepts/configuration/pod-priority-preemption/

​Reserve Compute Resources
• https://kubernetes.io/docs/tasks/administer-cluster/reserve-compute-resources/#node-

allocatable

Resources
Tutorials

51

​Configure Out Of Resource Handling
• https://kubernetes.io/docs/tasks/administer-cluster/out-of-resource/#eviction-policy

​Using Admission Controllers
• https://kubernetes.io/docs/admin/admission-controllers/

​Kubelet Flags
• https://kubernetes.io/docs/reference/generated/kubelet/

​LinuxCon 2016 Cgroups
• http://man7.org/conf/lceu2016/cgroups-LinuxCon.eu_2016-Kerrisk.pdf

​Kernel Documentation Cgroups
• https://www.kernel.org/doc/Documentation/cgroup-v2.txt

Resources
Tutorials

52

​LinuxCon 2016 Cgroups
• http://man7.org/conf/lceu2016/cgroups-LinuxCon.eu_2016-Kerrisk.pdf

​Kernel Documentation Cgroups
• https://www.kernel.org/doc/Documentation/cgroup-v2.txt

​LWN Cgroups Tutorial
• https://lwn.net/Articles/604609/

​Red Hat CFS Guide
• https://access.redhat.com/documentation/en-

us/red_hat_enterprise_linux/6/html/resource_management_guide/sec-cpu

Resources
Cgroups

53

​Kubernetes Resource Model
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/scheduling/resources.md

​Resource QoS in Kubernetes
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/resource-qos.md

​Downward API
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/downward_api_resources_limits_requests.md

​Implementing Resource Controls for Windows Containers and Docker Mappings
• https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-

containers/resource-controls

Resources
Design Docs

54

​Kubelet Eviction Policy
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/kubelet-eviction.md

​Priority in Resource Quota
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/scheduling/pod-priority-resourcequota.md

​Kubelet Pod Resource Management
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/pod-resource-management.md

​Node Allocatable Resources
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/node-allocatable.md

Resources
Design Docs

55

​Kubelet Disk Accounting
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/node/disk-accounting.md

​Pod Preemption in Kubernetes
• https://github.com/kubernetes/community/blob/master/contributors/design-

proposals/scheduling/pod-preemption.md

Resources
Design Docs

56

​Tim Hockin – Everything you ever wanted to know about Resource Scheduling…almost
• https://www.youtube.com/watch?v=nWGkvrIPqJ4
• https://speakerdeck.com/thockin/everything-you-ever-wanted-to-know-about-resource-

scheduling-dot-dot-dot-almost

​Cluster Management at Google with Borg
• https://www.youtube.com/watch?v=0W49z8hVn0k&t=0s&index=38&list=WL

​Local Ephemeral Storage Resource Management
• https://www.youtube.com/watch?v=cvK1t1h15XM
• https://schd.ws/hosted_files/kccncna17/3e/Kubecon_localstorage.pdf

Resources
Talks

57

​Load Testing Kubernetes: How to Optimize Your Cluster Resource Allocation in
Production
• https://www.youtube.com/watch?v=-lsJyni7EQA

​Container Performance Analysis (Brendan Gregg)
• https://www.youtube.com/watch?v=bK9A5ODIgac

Resources
Talks

58

​https://engineering.linkedin.com/blog/2016/08/don_t-let-linux-control-groups-
uncontrolled

​https://engineering.linkedin.com/blog/2016/11/application-pauses-when-running-jvm-
inside-linux-control-groups

​https://circleci.com/blog/how-to-handle-java-oom-errors/

​https://mesosphere.com/blog/java-container/

​https://blog.markvincze.com/troubleshooting-high-memory-usage-with-asp-net-core-on-
kubernetes/
• https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals

​https://very-serio.us/2017/12/05/running-jvms-in-kubernetes/

Resources
User Stories

59

QoS Classes
A.k.a. Priorities in Case a Node runs out of Resources (Oversubscription)

Guaranteed
+ Predictable SLA and highest Priority (Eviction)
- Lower Efficiency (Resources capped, no Overcommit)

Burstable
+ Increase Overcommit Level, use idle Resources*
- Medium Priority (Eviction), unbounded Resources*

Best Effort
+ High Resource Efficiency & Utilization
- Resource Starvation and Eviction very likely

*
When no Limits set

60

Resource Compressible* Node Overcommit
allowed

Out of Resource
Handling

cpu Yes Yes Throttle

memory No Yes Evict or OOM_kill

hugepages-<size> No No n/a
ephemeral-storage No Yes Evict

Extended Resources No No n/a
Device Plugins No No n/a

How QoS is enforced at the Node
Details

*
Compressible “yes” = Throttling
Compressible “no” = OOM Killer and/or Eviction

Enforcement

61

Program Runtim
e

Resource Management at the OS Level

Thread(s)
(1..n task_struct)

Linux Kernel Cgroups

C
on

ta
in

er
 R

es
ou

rc
e

D
ef

in
iti

on

