
Building git push
workflows for
Kubernetes

hasura.io

https://hasura.io/

Hi!
Tanmai Gopal

Co-founder, hasura.io

@tanmaigo

What is a git-push workflow

● Write code

● git push heroku master to deploy

Changed the world for developers, because it used dev only tools (git). Reduced

unnecessary abstractions.

kubectl + git. Everything can be built around these 2 systems. Build your own git-push

workflows. The main goal is to simplify devops and “pipelines”.

The simplest DevOps task: Build & deploy
I have source code on my machine. I can run it locally.

I want to deploy my source code at current commit.

When git push:

- Build: Dockerfile tagged with commit

- Deploy: Apply changes to kubernetes deployment with new image tag

Before <> after

$ docker build -t registry.com/my-image:my-tag

$ docker push registry.com/my-image:my-tag $ git push dev master

$ kubectl set image deployment/my-deployment
container=registry.com/my-image:my-tag

Git hooks for “git push”
client-side

> pre-push Exit can abort push

server-side

> pre-receive Exit can abort push

> post-receive Cannot abort push

Executable script in .git/hooks/ named <hook>

.git/hooks/pre-receive

The obvious architecture
- Git remote agent on your

cluster. Pre-receive hook:

- Build docker image

- Apply to k8s deployment

- Configuration:

- SSH keys

- Dockerfile path

- Sync configuration changes

with the git-remote agent

git-remote
k8s :: deployment,svc

Exposed externally
SSH-key based auth

deployment

$ git push dev master

CRD configuration
k8s :: CRD

Deployments to update
authorised-keys
Dockerfile path

controller
k8s :: operator

Apply changes

$ kubectl ... remote.yaml

</> your computer

Kubernetes cluster

kubectl create -f

Setup apiVersion: gitkube.sh/v1alpha1
kind: Remote
metadata:
 name: dev
 namespace: default
spec:
 deployments:
 - name: nginx

containers:
- name: nginx

 path: .
 dockerfile: Dockerfile
 authorizedKeys:
 - "ssh-rsa <key>"

Demo 1: git push dev master to deploy an HTML webpage

https://docs.google.com/file/d/1VHkjYUYeFSZxiOsg_Xm6-QBJSys5x17y/preview

The pre-receive hook
https://github.com/hasura/gitkube/blob/master/build/gitkubed/pre_receive.sh

https://github.com/hasura/gitkube/blob/master/build/gitkubed/pre_receive.sh

https://github.com/hasura/gitkube

Run on any kubernetes cluster

Customise and extend for your own

use-case

https://github.com/hasura/gitkube

Benefits
● A developer only needs to have git.

● Customise the hook and just do you.

○ Your “hooks” have direct access to the cluster environment for your deployment tasks

○ Eg: Use secretKeyRefs to provide custom docker build args

Demo 2: Using k8s secrets in hooks to send a slack notif

https://docs.google.com/file/d/1wz1ZSoN4vYIF03rcRiOLIzD8w2RB_Zkb/preview

We’re onto something here...
Extend this idea to more devops tasks?

git push to:

1. Build and run unit-tests

2. Deploy code

3. Deploy configuration

4. Apply stateful migrations

5. Run integration tests

But all based on just one idea

git push to apply changes to kubernetes objects.

This way, git just works for AllTheThings™

git checkout <commit>

git push dev my-branch:master

Kubernetes controller
The most awesome thing about how kubernetes works:

</>
yaml Control loops

containers, iptables,
resource allocation,

volumes

You do this

This just
happens

And everything is moving in this direction. Eg: The CRD + operator pattern

CRD + operator pattern

</>
yaml

Operator
(does stateful

things)
Jobs, pods, volumes

You do this

This just
happens

There is no notion of “sequence”

</>
yaml

containers, iptables,
resource allocation,

volumes

K8s
controllers

You do this

This just happens.
Eventually.

Custom
operators</>

yaml

</>
yaml

</>
yaml

</>
yaml

Run jobs, reconfigure
deployments

A typical DevOps pipeline needs to:
Build & test: Source code + unit tests

Deploy: Update configuration, run stateful tasks

Integration tests: Test microservice1’s dependency on microservice2

A typical DevOps pipeline needs to:

Build + run unit-tests Dockerfile

Production build (artifacts) Multi-stage dockerfile

Deploy configuration Update kubernetes manifests

Run stateful tasks (database migrations) Update CRs

Run integration tests
Run jobs with init-containers
to check if microservices are
ready

Goodbye “pipelines”?
If everything is a kubernetes manifest backed by operators, then everything is declarative. Note: this is not

talking about human-in-loop governance type pipelines, just the idea of sequenced tasks. Governance pipelines

are a separate concern.

Demo 3: Change a subdomain by changing a YAML value

https://docs.google.com/file/d/14xVxqiuPvwcTnjNS-IFzsbFT0cXcQqs4/preview

Demo 4: Applying postgres migrations on git push

https://docs.google.com/file/d/1wtYfPTxXnCXYeWK70_6qgOFVr4FNZTSL/preview

Things that are hard with GitOps
- Secrets

- Must be applied without committing to git

- pre-push hook?

- Templating

- Helm

- Kubernetes native templating

- Releases, canary deployments?

- GitOps with istio :)

Gitkube roadmap
- Easy to write custom hooks

- Write in any language

- Boilerplate/plugins

- UI to see past “pushes”

- git push ≣ /vendor/webhook

gitkube.sh

hasura.io

@tanmaigo

@HasuraHQ

SU-C30

http://gitkube.sh/
https://hasura.io/
https://twitter.com/tanmaigo?lang=en
https://twitter.com/hasurahq

