Function Composition in a
Serverless World

Timirah James Erwin van Eyk
Developer Advocate Software Engineer
Platform9 Systems Platform9 Systems

o @timirahij O @erwinvaneyk

'j fission % PLATFORMO) @fissionio

https://twitter.com/erwinvaneyk

First, what’s FaaS?

Function-as-a-Service enable developers to deploy parts of an application on an “as needed”
basis using short-lived functions.

Benefits of FaaS:

e Complete abstraction of servers away from the developer
e Billing based on consumption and executions, not server instance sizes

e Scaling services is simplified

What is Function Composition?

The concept of (re)using smaller functions
to create complex functions.

...Super function combinations

Example App

Function A

Recognize Image

Function B

Translate Eng to Danish

Can we combine both functions into one service?

Approaches

Manual Compilation

Direct/Chaining

Coordinator

Event-Driven

Manual Compilation

Merge functions on a source code level.

One big function that calls all other
individual functions.

One big task from FaaS
framework’s point-of-view.

5

Qlerﬂ’ l Combined FaasS Function
I___J |

Request
|)l l

Function A‘]

(i

wbineel FaaS Function
S

func recognizelmage(image) {

// A: Send the JPEG to 3rd Party Al
service for standard image tagging.

}
func translate() {

// B: Translate text from Eng to Danish

}

func combo() {
recognize(image)

translate()

Pros: Cons:

‘/Very simple, no framework X Function gets bigger and may load
needed at all slowly

x Cannot scale independently

i/ No serialization overhead

Function A

Scaling

Instance 1
Instance 1 Instance 2

Function A Function A Function A

Instance 2

Function A

Direct Functions (chaining)

Form a chain, calling each other.

Each task is a separate FaaS

function.

Each function knows what comes
after it and calls it.

func recognizelmage(image) {

// A: Send the JPEG to 3rd Party Al
service for standard image tagging.

// HTTP call to translation function

}

func translate() {

// B: Translate text from Eng to
Danish

}

Pros: Cons:

X Each function waits for the next

No external components function, wasting $

needed

\/No serialization overhead X Responsibility for things like
handling failures, and thinking

about fallbacks/retries.

X pains of updating a function

Coordinator Functions

Functions that manage the execution of other functions by calling them directly.

e One “omniscient”’ function calls

each function (via remote HTTP);
manages the execution flow.

Similar to direct functions, except
each function is unaware of the
other functions.

C.lieyﬂ' Coordinator

Request

-

Qoordinod'orj

Pros: Cons:

/No need to modify the primitive x Overhead of an extra function
functions

Coordinator is a long running

/Very flexible; user can function (it starts first, and ends
manipulate the control flow how last).

they like. (Separation of

concerns)

Event-Driven Function Composition

Functions emitting and reacting to events on message queues.

|dea: focus on the data flow instead of the control flow.

.
fl ' N
ST 4\‘)]—}7;_‘_9»\ o, '
- a— = _ = :/)
I/I',
{ ==

Client

—

MQSSagg QU@JQJ » Faas MQ 'T'ﬁgge_r

Funetion A

Event)

Client

~

(_ o

(M&saga O\ueye,_l ' Faas MQ 'T_ﬁ?aer‘

Funetion A

—]

18

E

essoage Quev

Evert)

Qhe_rﬁ'

E

essage Quev

e.] i Faas MQ 'T‘ricjger Function 4 Function B
Event) Request
/(Evert response.
Event Re_que}p'
1
(___________ FeSPOnSe oo
e;} ’ Foas MQ 'T_h??e_r Funetion A Funetion B

Pros

e Get all the luxury of message queues (e.g. messaging, error handling).
e Decoupled functions

Commonly used and well understood architecture.

Cons

e \Web of implicit dependencies.

e Difficult to version or upgrade functions.

e Supports limited control flow constructs. (e.g. conditional and on-error
constructs)

Workflows

Create a “flowchart” of function interactions.

¢ lient Worktlow meeyodrj

Funetion A LFvnQ-ﬁcn B

—

Re,que,s‘!')

Reques-f'

———

.- ——

¢ it l‘wonk{?low Fromework” l

Funetion 4 Function B

22

Workflows are everywhere!

&

MISTRAL

Node-RED

52 COMuNAo

BR!GADE

P‘?-Q

Apache Airflow

Business Processes Data Pipelining DevOps

23

FaaS-focused Workflows

2 1 #%fission

D @ fo-’ workflows

AWS Step Functions Azure Logic Apps

f|55|on

h

Fission Workflow

r ~ ” ~

»> Controllar }1 { Schadular |

\ - . -

“% fission

workflows

Deploys on Kubernetes
and Fission

Stores events not state

Executes state machines

workflows

Demo #% fission

To follow along or to try it out:

https://github.com/fission/fission-workflows/examples/demo-kubecon2018

https://github.com/fission/fission-workflows/examples/demo-kubecon2018

Pros

Centralization of composition logic, logging, and visualization
loosely coupled functions

Handles communication complexity (latency, retries, failures, etc.)
Improved performance (better/anticipating scheduling of functions)

Cons

e More infrastructure complexity
e Need to learn workflow-specific language or DSL

Approaches (recap)

Which approach should you
use? &

Try them out here:
https://github.com/fission/faas-composition-patterns

https://github.com/fission/faas-composition-patterns

Serverless is LIT!!!

THANK YOU.

Fission.io
blog.fission.io
slack.fission.io
github.com/fission

Twitter: @fissionio, @timirahj, @erwinvaneyk

http://blog.fission.io
http://slack.fission.io

