
Federated Prometheus
Monitoring at Scale

LungChih Tung, Software Engineer
Nandhakumar Venkatachalam, Princ Production Engineer

Team

● Core Infrastructure
○ Infrastructure team powering all Yahoo Media Products

Yahoo Media Products

Homepage, News Finance Sports, Fantasy

Nodes

Journey to Kubernetes

STAGE
colo1 ETCD Master NodesNodesNodes

NodesCANARY
colo1 ETCD Master NodesNodesNodes

NodesPROD
colo1 ETCD Master NodesNodesNodes

Monitoring Solutions

● Inhouse monitoring to get system’s health
● Missing insight into kubernetes cluster metrics
● Heapster InFluxDB sink with grafana
● Prometheus 1.x

○ Remote write data into inhouse monitoring system

Heapster with InfluxDB

● Spanning across data centers
● Demand for higher visibility
● Growing monitoring requirement

Growing Kubernetes Clusters

STAGE

CANARY

PROD

CANARY
CANARY

CANARY
CANARYCANARY

Colo n

PROD
PROD

PROD
PROD

PRODPROD
Colo n

CANARY
Colo n

PROD
Colo n

Cluster Health:
● ETCD
● Controller Manager
● Scheduler
● Kubernetes API server
● Kubelet
● Kubelet CAdvisor
● Kube DNS
● Any Add-ons...

Application Health:
● Namespace
● Deployment
● Pod
● Container

Our Requirement

Prometheus 2.0 to the Rescue

● Huge performance improvement specifically in storage
● Simple syntax for aggregation and alerting rules
● Good documentation
● Our focus on pulling every metrics
● Aggregation rules

Metrics Collection

● Prometheus example yaml
● Endpoint discovery is simple.

○ annotation prometheus.io/scrape=true
● Simple File based discovery for apiservers

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml

Metrics Collection - API Server

● Prometheus example yaml
● Endpoint discovery is simple.

○ annotation prometheus.io/scrape=true
● Simple File based discovery for apiservers

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml

Metrics Proxy

● ETCD ports are accessible only by master machines
● Scheduler and controller ports bind to 127.0.0.1

Metrics Proxy - ETCD

● ETCD ports are accessible only by master machines
● Scheduler and controller ports bind to 127.0.0.1

Metrics Proxy - Controller

● ETCD ports are accessible only by master machines
● Scheduler and controller ports bind to 127.0.0.1

Volume of the metrics

Federation

Cluster 1 Cluster 2 Cluster n

Federated
Cluster

● Aggregated time series data
● Longer retention period
● Permanent storage
● Unified display of data

Selective and Aggregated
metrics from each cluster

Federation Configuration

● Federate all control plane
components

● Selective aggregated
metrics

● Ton of rules from prometheus operator team
● Built CPU and Memory utilization by

○ Colo(cluster) level
○ Namespace/ Deployment/ Pod and Container level

Aggregation Rules

colo level cpu utilization

- record: colo:cpu_percentage:rate

 expr: 100 *

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="",

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo)

/

sum(label_replace(container_spec_cpu_shares{container_name!="",

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo) * 1000

Aggregation - Colo level

CPU usage of all containers per colo

CPU shares allocated to all containers per colo

namespace level cpu utilization

- record: colo_namespace:cpu_percentage:rate

 expr: 100 *

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="",

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo, namespace)

/

sum(label_replace(container_spec_cpu_shares{container_name!="",

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY (colo,

namespace) * 1000

Aggregation - Namespace level

CPU usage of all containers per namespace

CPU shares allocated to all containers per namespace

controller level cpu utilization

- record: colo_namespace_controller:cpu_percentage:rate

 expr: 100 *

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="",

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo, namespace, controller)

/

sum(label_replace(container_spec_cpu_shares{container_name!="",

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY (colo,

namespace, controller) * 1000

Aggregation - Controller level

CPU usage of all containers per controller

CPU shares allocated to all containers per controller

pod level cpu utilization

- record: colo_namespace_controller_pod:cpu_percentage:rate

expr: 100 *

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="",

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo, namespace, controller, pod_name)

/

sum(label_replace(container_spec_cpu_shares{container_name!="",

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo, namespace, controller, pod_name) * 1000

Aggregation - Pod level

CPU usage of all containers per pod

CPU shares allocated to all containers per pod

container level cpu utilization

- record: colo_namespace_controller_pod_container:cpu_percentage:rate

 expr: 100 *

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="",

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo, namespace, controller, pod_name, container_name)

/

sum(label_replace(container_spec_cpu_shares{container_name!="",

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY

(colo, namespace, controller, pod_name, container_name) * 1000

Aggregation - Container level

CPU usage per container

CPU shares allocated to container

Alert Manager

● Alert manager defines how to handle alerts (email, slack notification, etc.)
○ Grouping alert
○ Silences
○ Inhibition

Alert Rules

- alert: K8SNodeNotReady

 expr: kube_node_status_condition{condition="Ready",status="true"} == 0

 for: 1h

 labels:

 severity: warning

 colo: bf1

 environment: production

 annotations:

 description: The Kubelet on {{ $labels.node }} has not checked in with the API,

 or has set itself to NotReady, for more than an hour

 summary: Node status is NotReady

Alert Rules

- alert: PodCPUPercentage

 expr: colo_namespace_controller_pod:cpu_percentage:rate{namespace=~"kube-.*"} > 75

 for: 10m

 labels:

 severity: critical

 colo: bf1

 environment: production

 annotations:

 description: 'Pod cpu usage is above 75 for {{ $value }}.

 Please find out the cause of the spike and if required increase CPU allocation'

 summary: Pod cpu usage is above threshold

Alerting on Prometheus

● Federated prometheus monitors individual prometheus
● A cron job monitors federated prometheus

Dashboards

Cluster View

Namespace

Deployment

Controller

Scheduler

API server

Kubelet

kubenode

ETCD

n

Package version

Thank you

Q & A

