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Team

● Core Infrastructure 
○ Infrastructure team powering all Yahoo Media Products

Yahoo Media Products

Homepage, News Finance Sports, Fantasy
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Monitoring Solutions

● Inhouse monitoring to get system’s health
● Missing insight into kubernetes cluster metrics
● Heapster InFluxDB sink with grafana
● Prometheus 1.x

○ Remote write data into inhouse monitoring system



Heapster with InfluxDB



● Spanning across data centers
● Demand for higher visibility
● Growing monitoring requirement

Growing Kubernetes Clusters
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Cluster Health:
● ETCD 
● Controller Manager
● Scheduler
● Kubernetes API server
● Kubelet
● Kubelet CAdvisor
● Kube DNS 
● Any Add-ons...

Application Health:
● Namespace
● Deployment
● Pod
● Container

Our Requirement



Prometheus 2.0 to the Rescue

● Huge performance improvement specifically in storage
● Simple syntax for aggregation and alerting rules
● Good documentation
● Our focus on pulling every metrics
● Aggregation rules



Metrics Collection

● Prometheus example yaml
● Endpoint discovery is simple.

○ annotation prometheus.io/scrape=true
● Simple File based discovery for apiservers

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml


Metrics Collection - API Server

● Prometheus example yaml
● Endpoint discovery is simple.

○ annotation prometheus.io/scrape=true
● Simple File based discovery for apiservers

https://github.com/prometheus/prometheus/blob/master/documentation/examples/prometheus-kubernetes.yml


Metrics Proxy

● ETCD ports are accessible only by master machines
● Scheduler and controller ports bind to 127.0.0.1



Metrics Proxy - ETCD

● ETCD ports are accessible only by master machines
● Scheduler and controller ports bind to 127.0.0.1



Metrics Proxy - Controller

● ETCD ports are accessible only by master machines
● Scheduler and controller ports bind to 127.0.0.1



Volume of the metrics



Federation

Cluster 1 Cluster 2 Cluster n

Federated 
Cluster

● Aggregated time series data 
● Longer retention period
● Permanent storage
● Unified display of data

Selective and Aggregated 
metrics from each cluster



Federation Configuration

● Federate all control plane 
components

● Selective aggregated 
metrics 



● Ton of rules from prometheus operator team
● Built CPU and Memory utilization by

○ Colo(cluster) level
○ Namespace/ Deployment/ Pod and Container level

Aggregation Rules



# colo level cpu utilization

- record: colo:cpu_percentage:rate

   expr: 100 *     

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="", 

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo) 

/

sum(label_replace(container_spec_cpu_shares{container_name!="", 

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo) * 1000

Aggregation - Colo level

CPU usage of all containers per colo

CPU shares allocated to all containers per colo



# namespace level cpu utilization

- record: colo_namespace:cpu_percentage:rate

   expr: 100 *     

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="", 

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo, namespace) 

/

sum(label_replace(container_spec_cpu_shares{container_name!="", 

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY (colo, 

namespace) * 1000

Aggregation - Namespace level

CPU usage of all containers per namespace

CPU shares allocated to all containers per namespace



# controller level cpu utilization

- record: colo_namespace_controller:cpu_percentage:rate

   expr: 100 *     

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="", 

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo, namespace, controller) 

/

sum(label_replace(container_spec_cpu_shares{container_name!="", 

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY (colo, 

namespace, controller) * 1000

Aggregation - Controller level

CPU usage of all containers per controller

CPU shares allocated to all containers per controller



# pod level cpu utilization

- record: colo_namespace_controller_pod:cpu_percentage:rate

expr: 100 *     

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="", 

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo, namespace, controller, pod_name) 

/

sum(label_replace(container_spec_cpu_shares{container_name!="", 

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo, namespace, controller, pod_name) * 1000

Aggregation - Pod level

CPU usage of all containers per pod

CPU shares allocated to all containers per pod



# container level cpu utilization

- record: colo_namespace_controller_pod_container:cpu_percentage:rate

   expr: 100 *     

sum(label_replace(irate(container_cpu_usage_seconds_total{container_name!="", 

container_name!="POD"}[5m]), "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo, namespace, controller, pod_name, container_name) 

/

sum(label_replace(container_spec_cpu_shares{container_name!="", 

container_name!="POD"}, "controller", "$1", "pod_name", "^(.*)-[a-z0-9]+")) BY 

(colo, namespace, controller, pod_name, container_name) * 1000

Aggregation - Container level

CPU usage per container

CPU shares allocated to container



Alert Manager

● Alert manager defines how to handle alerts (email, slack notification, etc.)
○ Grouping alert
○ Silences
○ Inhibition



Alert Rules

- alert: K8SNodeNotReady

   expr: kube_node_status_condition{condition="Ready",status="true"} == 0

   for: 1h

   labels:

     severity: warning

     colo: bf1

     environment: production

   annotations:

     description: The Kubelet on {{ $labels.node }} has not checked in with the API,

       or has set itself to NotReady, for more than an hour

     summary: Node status is NotReady



Alert Rules

- alert: PodCPUPercentage

   expr: colo_namespace_controller_pod:cpu_percentage:rate{namespace=~"kube-.*"} > 75

   for: 10m

   labels:

     severity: critical

     colo: bf1

     environment: production

   annotations:

     description: 'Pod cpu usage is above 75 for {{ $value }}.

       Please find out the cause of the spike and if required increase CPU allocation'

     summary: Pod cpu usage is above threshold



Alerting on Prometheus

● Federated prometheus monitors individual prometheus
● A cron job monitors federated prometheus



Dashboards
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