
Entitlements 

Understandable Container Security 
Controls

Nassim Eddequiouaq, Justin Cormack
Security at Docker, Inc.

nass@docker.com 
justin.cormack@docker.com



How People See Container Security 



How People Should See Container Security



The Motto: Unusable security is not security.



Container (and OS) Security
So… what do we have here?

Capabilities
Seccomp
AppArmor
SElinux
Namespaces
Cgroups
No_New_Privs
Image Signing
Network Security
Audit Subsystem
Integrity Measurement Architecture (IMA)
...



“Please make sure your container is securely configured.”



Docker Runtime Security

$ docker run --help | grep security-stuff
  --cap-add              Add Linux capabilities
  --cap-drop             Drop Linux capabilities
  --cgroup-parent        Optional parent cgroup for the container
  --device               Add a host device to the container
  --device-cgroup-rule   Add a rule to the cgroup allowed devices list
  --isolation            Container isolation technology
  --network              Connect a container to a network
  --pid                  PID namespace to use
  --privileged           Give extended privileges to this container
  --read-only            Mount the container's root filesystem as read only
  --security-opt         Security Options (Seccomp, AppArmor, ..)
  --sysctl               Sysctl options
  --user                 Username or UID
  --userns               User namespace to use
  --uts                  UTS namespace to use
  [...]



Capabilities
Granular Root Permissions

- Slice root privileges into smaller permission chunks

- Can be added or dropped from the whitelist

- ~Granular control:

- Kernel auditing

- User permissions bypass

- File permissions bypass

- MAC (LSM) permissions bypass

- [...]  x  40 

$ docker run --rm -it --cap-drop NET_BIND_SERVICE alpine sh



Namespaces
Resources Segmentation

- Partition kernel resources

- Scope of visibility restricted to your own namespace

- Segment:

- Processes

- Network stacks, devices, ports, etc..

- Mount points

- IPCs

- Users

- [...]

$ docker run --rm -it --pid=host alpine sh



Seccomp
Syscall Firewall

- Kernel module based on eBPF

- Can allow / block:

- System calls

- System call arguments (no deref)

- Can be applied per architecture

- Users can override Docker defaults

$ docker run --rm -it \
  --security-opt seccomp=/path/to/seccomp/profile.json \
  hello-world



AppArmor
And other LSMs

- Linux Security Modules allow additional resource restriction:

- Files

- Capabilities

- Network (network features, protocols, IPv4/6, ...)

- Tracing, Signals, Mounts…

- [...]

- AppArmor is a MAC permission system

- Bind access control to programs (path-based)

$ docker run --rm -it \
  --security-opt apparmor=/path/to/aa/profile.json \
  hello-world



“Can you generate the security profile for the webapp?”



{
   "

name
s": 

[

    
  "c

lone
"

   ]
,

   "
acti

on":
 "SC

MP_A
CT_A

LLOW
",

   "
args

": [

    
  {

    
    

 "in
dex"

: 0,

    
    

 "va
lue"

: 20
8050

5856
,

    
    

 "va
lueT

wo":
 0,

    
    

 "op
": "

SCMP
_CMP

_MAS
KED_

EQ"

    
  }

   ]
,

   "
comm

ent"
: ""

,

   "
incl

udes
": {

},

   "
excl

udes
": {

   "
caps

": [

    
  "C

AP_S
YS_A

DMIN
"

   ]
,

   "
arch

es":
 [

    
  "s

390"
,

    
  "s

390x
"

   ]

}

       CAP_NET_ADMIN

              Perform various network-related operations:

              * interface configuration;

              * administration of IP firewall, masquerading, and 

accounting;
              * modify routing tables;

              * bind to any address for transparent proxying;

              * set type-of-service (TOS)

              * clear driver statistics;

              * set promiscuous mode;

              * enabling multicasting;

              * use setsockopt(2) to set the following socket options:

                SO_DEBUG, SO_MARK, SO_PRIORITY (for a priority outside 

the
                range 0 to 6), SO_RCVBUFFORCE, and SO_SNDBUFFORCE.

       CAP_NET_BIND_SERVICE

              Bind a socket to Internet domain privileged ports (port

              numbers less than 1024).

       CAP_NET_BROADCAST

              (Unused)  Make socket broadcasts, and listen to 

multicasts.       CAP_NET_RAW

              * Use RAW and PACKET sockets;

              * bind to any address for transparent proxying.

http://man7.org/linux/man-pages/man2/setsockopt.2.html


{
   "

name
s": 

[

    
  "c

lone
"

   ]
,

   "
acti

on":
 "SC

MP_A
CT_A

LLOW
",

   "
args

": [

    
  {

    
    

 "in
dex"

: 0,

    
    

 "va
lue"

: 20
8050

5856
,

    
    

 "va
lueT

wo":
 0,

    
    

 "op
": "

SCMP
_CMP

_MAS
KED_

EQ"

    
  }

   ]
,

   "
comm

ent"
: ""

,

   "
incl

udes
": {

},

   "
excl

udes
": {

   "
caps

": [

    
  "C

AP_S
YS_A

DMIN
"

   ]
,

   "
arch

es":
 [

    
  "s

390"
,

    
  "s

390x
"

   ]

}

       CAP_NET_ADMIN

              Perform various network-related operations:

              * interface configuration;

              * administration of IP firewall, masquerading, and 

accounting;
              * modify routing tables;

              * bind to any address for transparent proxying;

              * set type-of-service (TOS)

              * clear driver statistics;

              * set promiscuous mode;

              * enabling multicasting;

              * use setsockopt(2) to set the following socket options:

                SO_DEBUG, SO_MARK, SO_PRIORITY (for a priority outside 

the
                range 0 to 6), SO_RCVBUFFORCE, and SO_SNDBUFFORCE.

       CAP_NET_BIND_SERVICE

              Bind a socket to Internet domain privileged ports (port

              numbers less than 1024).

       CAP_NET_BROADCAST

              (Unused)  Make socket broadcasts, and listen to 

multicasts.       CAP_NET_RAW

              * Use RAW and PACKET sockets;

              * bind to any address for transparent proxying.

  
   NOTHX!

http://man7.org/linux/man-pages/man2/setsockopt.2.html


--privileged
default profiles
unconfined

containers do not contain

Consequences



Solution: Docker Entitlements



Docker Entitlements Proposal
AKA ”Let’s simplify all this.”

☐ network.access=confined
☐ network.access=user
☐ network.access=proxy
☑ network.access=admin

☐ security.access=confined
☑ security.access=viewer
☐ security.access=admin
☑ security.fs=read-only

☑ host.devices.access=none
☐ host.devices.access=admin
...



Docker Entitlements Proposal
AKA ”Let’s simplify all this.”

☐ network.access=confined
☐ network.access=user
☐ network.access=proxy
☑ network.access=admin

☐ security.access=confined
☑ security.access=viewer
☐ security.access=admin
☑ security.fs=read-only

☑ host.devices.access=none
☐ host.devices.access=admin
...



Behind the scenes
AKA ”Don’t worry, I got this.”

network.access=confined

Seccomp AppArmor Capabilities

- socket()
- socketpair()
- bind()
- …
+ socket(AF_UNIX | AF_LOCAL)
+ ...

- NET_ADMIN
- NET_BIND_SERVICE
- NET_RAW
- NET_BROADCAST

+ deny network
+ deny capability net_admin
+ deny capability net_raw
+ fs restrictions

Linux.MaskedPaths

+ /proc/sys/net
+ /sys/class/net
+ ...

...



Behind the scenes
AKA ”Don’t worry, I got this.”

network.access=admin

Seccomp AppArmor Capabilities

+ Same as ‘network.proxy’ 
+ setsockopt(SO_DEBUG,..

+ Same as ‘network.proxy’
+ CAP_NET_ADMIN

+ Same as ‘network.proxy’
+ capability net_admin
+ network packet
...



Wait.. But there’s more to do!



Integration with Image Signing
Permissions as part of a Trusted Bundle 

Image Entitlements+ = Image
Security 
Profile)(docker build



Integration with Image Signing
Permissions as part of a Trusted Bundle 

Image Entitlements+ = Image
Security 
Profile

docker trust sign

)(docker build

( Image
Security 
Profile ) = Image

Security 
Profile



Integration with Image Signing
Permissions as part of a trusted bundle 

Image Entitlements+ = Image
Security 
Profile)(docker build

docker 
run/push/pull ( Image

Security 
Profile ) =

docker trust sign ( Image
Security 
Profile ) = Image

Security 
Profile



For App Publishers
Allow Content Publishers to advertise the best security settings

docker build

docker build --entitlements docker trust sign
Security
Profile

Security
Profile



For Users
Who shouldn’t have to deal with all that

ɝ

docker pull

docker pull
Security
Profile

docker run

docker run

- Protection
- Expertise
- Support



Key Goals

● Great User Experience

● Empower both the developers and the devops

● New High-Level Permissions Standard

● Supported by most platforms

● Deprecate the infamous --privileged flag

● No universal default config

● Tie security profiles to images securely



But Also...

● Custom entitlements

● API Access Control

● Service-to-Service communication control (integration with service mesh)

● Many more, if you have additional ideas



Demo time? ^_^



What’s left?

● Moby
○ Cleanup integration in Moby, Docker CLI and SwarmKit
○ As much community feedback as possible on default entitlements 
○ Improve integration with  docker trust 

● Kubernetes
○ Finish the PRD
○ Community proposal
○ Implementation

● Docker integration design (image format, versioning, custom entitlements ..)



Pain Points
“Hey! Not so fast”

- “Collisions” on resource restriction

- Backward compatibility

- Standards are hard to define

- Baked-in entitlements trust management



How to Contribute?

● Github repo:  https://github.com/moby/libentitlement
● <3 Feedback <3

○ Usability

○ Do default entitlements make sense?

○ Design opinion

● Integration PRs need more cleanup, stay tuned

● Reach out / open issues

https://github.com/moby/libentitlement


THANK YOU :)
Nassim Eddequiouaq, Justin Cormack

nass@docker.com justin.cormack@docker.com

github@n4ss           github@justincormack
twitter@n4zs_          twitter@justincormack


