
2018

Container Storage Interface (CSI)
Present and Future
Jie Yu (jie@mesosphere.com)

2

About Me

● Tech Lead @Mesosphere
● Co-author of CSI spec
● Apache Mesos PMC & Committer
● CSE PhD from U. of Michigan
● Former Twitter Engineer

3

● Motivations and Background
● Goals
● Design Choices
● Spec Overview
● CO Integrations
● Governance Model
● Future

Outline

4

Why CSI?

5

Storage Providers

Storage in Cloud Native Environment

Container Orchestrators

Pluggable Storage Interface

EBS GCE PD

.......

Ceph Portworx NetApp

.......

Create/Delete volumes
Attach/Detach volumes
Mount/Unmount volumes
Format volumes
Create snapshots
...

6

Storage Interfaces - Container Orchestrators (CO)

Popular container orchestrators or middleware
have independently evolved storage interfaces

○ Docker volume plugins [link]
○ K8s FlexVolume [link]
○ K8s In-tree volume plugins [link]
○ Libstorage storage drivers [link]
○ OpenSDS volume drivers [link]

https://docs.docker.com/engine/extend/plugins_volume/
https://github.com/kubernetes/community/blob/master/contributors/devel/flexvolume.md
https://github.com/kubernetes/community/blob/master/sig-storage/volume-plugin-faq.md
http://libstorage.readthedocs.io/en/v0.2.1/user-guide/storage-providers/
https://github.com/opensds/opensds/blob/master/contrib/drivers/drivers.go#L36

7

Storage Interfaces - Storage Providers (SP)

Source: https://www.yuadon.com/category/news/

8

● CLI based interface
● Lack of Idempotency on APIs
● In-tree interface
● Tightly coupled with an implementation
● Too heavyweight

Problems with Existing Storage Interfaces

9

● Goals
○ Interoperability
○ Vendor neutral
○ Focus on specification
○ Control plane only
○ Keep it simple and boring

Container Storage Interface (CSI)

10

Timeline

First meeting between folks
from Kubernetes, Mesos,
Docker, and Cloud Foundry
communities. Set the goal
and principles for CSI.

Feb, 2017

March, 2017

Discussed the first
iteration of the draft
spec. Shared the
draft publically.

Github repo created.
Discussions moved
to github.

May, 2017

Dec, 2017

CSI 0.1 released!

Jan, 2018

Alpha CSI support in
Kubernetes 1.9.
Experimental CSI
support in Mesos 1.5.

CSI 0.2 released!

March, 2018

11

● In-tree vs. Out-of-tree
● Service vs. CLI
● Controller and Node services
● Idempotency
● Wire protocol: gRPC
● Async vs. Sync APIs
● Plugin packaging and deployment

Design Choices

12

Plugin Model: In-tree

In-tree plugins

Container Orchestrator

OS process

Storage Plugins

13

Plugin Model: Out-of-tree

Container Orchestrator

OS process

Storage Plugins

Examples: FlexVolume

14

● Decision: Out-of-tree

● Drawbacks of in-tree plugin model
○ Coupled release cycles
○ Testing burden
○ Force a choice on the language
○ Force plugins to be open source
○ Security (same privilege as the CO)

Plugin Model: In-tree vs. Out-of-tree

15

Service vs. CLI

Container Orchestrator

OS process

Storage Plugins

● CLI?
○ Vendor deploys binaries on hosts
○ CO invokes the binary with args

● Long running service?
○ Vendor deploys services on hosts
○ CO makes requests to the service

16

● Decision: Service

● Reasoning
○ Services are much easier to deploy
○ Root access required to install CLI binaries
○ Deploying CLI binary dependencies is not easy
○ Fuse based backends require long running processes

Service vs. CLI

17

● Volume operations that have to be executed on the node
○ OS mount/unmount (e.g., mount(2) on Linux)
○ iSCSI initiator

● Volume operations that can be executed on any node
○ Volume attach/detach (e.g., EBS)
○ Volume creation/deletion

Controller and Node services

http://man7.org/linux/man-pages/man2/mount.2.html

18

● Decision: Two sets of APIs
○ Controller service
○ Node service

● Node services have to run on the node
○ node is where the volume will be used.

Controller and Node services

19

Option 1: Split Controller and Node Services

CO Master

Controller
Service

CO
Agent

Node
Service

Agent Node

CO
Agent

Node
Service

Agent Node

Master Node

20

Option 2: Headless

CO Node Service
&

Controller
Service

Agent Node

CO Node Service
&

Controller
Service

Agent Node

21

● Why this is important for a CO? Failure recovery!

Idempotency

Container
Orchestrator

Storage
Plugin

A

CreateVolume

Vol. A

If the API is NOT idempotent ...

22

● Why this is important for a CO? Failure recovery!

Idempotency

Container
Orchestrator

Storage
Plugin

A

CreateVolume

Vol. B

B

Leaked Volume!
If the API is NOT idempotent ...

23

● Why this is important for a CO? Failure recovery!

Idempotency

Container
Orchestrator

Storage
Plugin

A

CreateVolume(A)

Vol. A

If the API is idempotent ...

24

● Why this is important for a CO? Failure recovery!

Idempotency

Container
Orchestrator

Storage
Plugin

A

CreateVolume(A)

Vol. A

If the API is idempotent ...

Designing robust and predictable APIs with idempotency
https://stripe.com/blog/idempotency

https://stripe.com/blog/idempotency

25

● Why gRPC?
○ Language agnostic
○ Easy to write specification
○ Big community with lots of tooling
○ Real production users

Wire protocol: gRPC

26

● Decision: Synchronous API

● Reasoning:
○ Keep it simple. Async is significantly more complex
○ Async does not solve the long running operation problem
○ The key is to make the call idempotent for failure recovery
○ Plugin implementation can still be async

Async vs. Sync APIs

27

● Decision: Do not dictate
○ The only requirement is to provide gRPC endpoints (over unix

socket for now)

● Possible options:
○ Containers deployed by CO (e.g., DaemonSet)
○ Systemd services deployed by cluster admin

Plugin packaging and deployment

28

● 3 core gRPC services
○ Identity
○ Controller
○ Node

API Overview

29

service Identity {
 rpc GetPluginInfo(...) ...
 rpc GetPluginCapabilities(...)...
 rpc Probe (...)...
}

Identity Service

30

service Controller {
 rpc CreateVolume (...) ...
 rpc DeleteVolume (...) ...
 rpc ControllerPublishVolume (...) ...
 rpc ControllerUnpublishVolume (...) ...
 rpc ValidateVolumeCapabilities (...) ...
 rpc ListVolumes (...) ...
 rpc GetCapacity (...) ...
 rpc ControllerGetCapabilities (...) ...
}

Controller Service

Optional
Optional
Optional
Optional

Optional
Optional

31

service Node {
 rpc NodeStageVolume (...) ...
 rpc NodeUnstageVolume (...) ...
 rpc NodePublishVolume (...) ...
 rpc NodeUnpublishVolume (...) ...
 rpc NodeGetId (...) ...
 rpc NodeGetCapabilities (...) ...
}

Node Service

Optional
Optional

Optional

32

Volume Lifecycle

CREATED NODE_READY VOL_READY PUBLISHED

CreateVolume ControllerPublishVolume NodeStageVolume NodePublishVolume

Controller Service Node Service

NodeUnpublishVolumeNodeUnstageVolumeControllerUnpublishVolumeDeleteVolume

33

● No need for Controller Service!
● Perform mount in NodePublishVolume

● Reference implementation
○ https://github.com/kubernetes-csi/drivers/tree/master/pkg/nfs

Plugin Case Study: NFS

https://github.com/kubernetes-csi/drivers/tree/master/pkg/nfs

34

● Need both Controller and Node services
● Create the persistent disk in CreateVolume

○ Using disks.get and disks.insert APIs
● Attach the disk in the ControllerPublishVolume

○ Using instances.get and instances.attachDisk APIs
● Format and mount the volume in NodeStageVolume
● Perform a bind mount in NodePublishVolume

● Reference implementation
○ https://github.com/GoogleCloudPlatform/compute-persistent-disk-csi-driver

Plugin Case Study: GCE PD

https://cloud.google.com/compute/docs/reference/rest/v1/disks/get
https://cloud.google.com/compute/docs/reference/rest/v1/disks/insert
https://cloud.google.com/compute/docs/reference/rest/v1/instances/get
https://cloud.google.com/compute/docs/reference/rest/v1/instances/attachDisk
https://github.com/GoogleCloudPlatform/compute-persistent-disk-csi-driver

35

● Both Controller and Node services are deployed on the node
● Create logical volumes (`lvcreate`) in CreateVolume
● No need for ControllerPublishVolume
● Format and mount the volume in NodePublishVolume

● Reference implementation
○ https://github.com/mesosphere/csilvm

Plugin Case Study: LVM

https://github.com/mesosphere/csilvm

36

CO Integrations: Kubernetes

37

CO Integrations - Apache Mesos

Mesos Master
EBS CSI

Controller
Service

Mesos Agent

EBS CSI
Node

Service

gRPC

Agent Node

gRPC

Master Node

Storage Local
Resource Provider

Storage External
Resource Provider

Container

Container

LVM CSI
Services

Container

gRPC

v1 HTTP
API

v1 HTTP API Components provided by Mesos

Components provided by Storage Vendor

38

DC/OS Storage Support Based on CSI

Apache Mesos

DC/OS Storage Service

Volume
Profiles

Volume
Providers

Volume
Plugins

Volume Consumers (Mesos FW) Volume Providers (Mesos FW & RP)

……
……

DC/OS

https://docs.mesosphere.com/services/beta-storage/0.1.0-beta/

https://docs.mesosphere.com/services/beta-storage/0.1.0-beta/

39

Governance Model

● Goals
○ Inclusive and open
○ Independent of any single CO
○ Try to avoid a storage vendor war

40

Governance Model

https://github.com/container-storage-interface/community/blob/master/governance.md

41

● Topology aware
● Snapshot support
● Volume resizing
● Plugin registration
● Smoke test suite

Future Work

42

● Q&A

● Resources
○ Spec: https://github.com/container-storage-interface/spec
○ Community: https://github.com/container-storage-interface/community
○ Mailing list: container-storage-interface-community@googlegroups.com
○ Community sync: Weekly on Wednesdays at 9 AM (PST)
○ Recordings: https://www.youtube.com/channel/UC2KKgeIo5x3W0wjEz0RbKyg

Thanks!

https://github.com/container-storage-interface/spec
https://github.com/container-storage-interface/community
mailto:container-storage-interface-community@googlegroups.com
https://www.youtube.com/channel/UC2KKgeIo5x3W0wjEz0RbKyg

