
Challenges to Writing
Cloud Native Applications

Vallery Lancey,
Lead DevOps Engineer, Checkfront

Our platform empowers businesses to sell tours and activities on

any website by providing live inventory management, dynamic

pricing, customer notifications, and channel distribution. Checkfront

makes it easy to grow your business by automating your

administration and housing all your business tools in one place.

www.checkfront.com

Checkfront is a booking management platform trusted by
over 4,000 tour and activity operators worldwide.

About Vallery (that’s me!)
My background: software engineering & systems administration.

What I do at Checkfront as the lead “DevOps engineer”:

● Long term infrastructure & platform planning.

● Training and mentorship.

● Day to day ops.

● Contribute to product & tooling development.

● Lead the cloud push.

/vllry

$ man man
A guide to this presentation

This talk will use Kubernetes for
concrete examples, but will focus on
general cloud principals.

We’re going to cover 3 areas:

● Properties of cloud native apps
● What cloud platforms cause/impose
● How to develop for those cloud

platform constraints

Raise your hand if you have a question
about the material at hand. For other
questions, we’ll have a full Q&A at the end.

What Makes Software Cloud Native?
The CNCF says cloud native software uses open source tech to be:

1. Containerized. Each part (applications, processes, etc) is packaged in its
own container. This facilitates reproducibility, transparency, and resource
isolation.

2. Dynamically orchestrated. Containers are actively scheduled and
managed to optimize resource utilization.

3. Microservices oriented. Applications are segmented into microservices.
This significantly increases the overall agility and maintainability of
applications.

cncf.io/about/faq

https://www.cncf.io/about/faq/

Cloud Native

1. Automatic scaling, load balancing,
and replication.

2. Low-touch deployment.

3. Declarative state (config + apps).

4. Distinct separation between the
platform, and the services running
on it.

1. Changing the number of instances
requires intervention.

2. Deploying is largely manual.

3. Applications need manual, imperative
administration.

4. Little or no separation of concern
between the host systems and the
service(s) on them.

...Or NotCloud Native … Or Not

The Foundation Of Cloud Platforms
What cloud platforms are, and what they imply for apps that use them.

What is a Cloud Platform?
The platform is a fundamental
requirement of a cloud system.

It handles...

● Infrastructure provisioning and
teardown.

● Application deployment.
● Network discovery and routing.

Roles: The Runtime Environment
The platform takes on the role of running the app.

The runtime environment includes:

● (Virtual) hardware
● Container runtime
● Config/secret injection
● Scaling
● Service connectivity

The app becomes dependent on this behavior, and its limitations.

Roles: Ephemeral
Replication
Service replication is a core tenet of
cloud software.

Replication relies on treating containers as
ephemeral. Therefore, data must be explicitly
handled to be preserved.

This makes persistent data the biggest snag in
designing cloud native software.

Roles: Network Provider
Deployed applications will have changing # of
replicas, and changing IP addresses. This
requires service discovery, routing, and load
balancing.

The platform is responsible for translating
requests for “service X” to a suitable instance of
service X.

Cloud platforms typically use an edge proxy (EG
Kubernetes ingress) to route outside systems
from a single endpoint, to services in the cluster.
This edge proxy is often responsible for TLS
termination and port/protocol support.

Building On
The Cloud
Key challenges, and how to
handle them

● Persistent data storage
● Service coupling
● Internal API calls
● Testing & local development

Persistent Data Storage
4 fundamental patterns for replication:

1. Only 1 replica (no replication).
2. Only 1 replica of any given shard, multiple

shards.
3. Multiple replicas, data is volatile and

session specific.
4. Multiple replicas, data is replicated

between instances (static or dynamic
replicas).

Persistent Data Storage: Single Replica
Replication strategy #1: don’t.
Rarely a good idea.

● May be the temporary result of a lift-and-shift.
○ EG: 1 replica deployment of “the europe-west1

server”.

● May be used for services that can accept downtime.
○ Internal, not productivity-vital services.
○ Features that can be impaired with little overall

UX impact.

DB

App App
Database

App App

Persistent Data Storage: Unreplicated Shards
Replication strategy #2: don’t replicate
data, but split data into shards.

Extremely common pattern. A natural quickfix
for outgrowing strategy #1.

This allows the data store to be split into
multiple servers.

● Usually done with client units (users,
companies, websites, etc).

● Usually done with regional shards.

europe-
west

App

us-west

App

us-east

App

Europe
West

AppApp App

US West US East

Persistent Data Storage: Multiple volatile copies

Replication strategy #3: have multiple
replicas of the data store, but don’t
replicate data between them.

Primary use of this pattern: accidentally.

Can be used for caches, to avoid the write
overhead of updating a clustered cache. Instance

#14

App

Instance
#3

App

Instance
#3

App App

Instance
#14

Persistent Data Storage: Runtime data replication
Replication strategy #4: have multiple
replicas of the data store, replicate data
between them at runtime.

This is usually the ideal pattern, but requires the
most ops work.

Ease/feasibility is determined by the underlying
data store. Some (EG Cassandra) are designed for
this. Others (EG SQLite) are not at all.

europe-
west

App

europe-
west

App

europe-
west

App

Europe
West

App App App

US West US East

Persistent Data Storage:
Runtime data replication
In total, service spinnup entails:

● Finding or creating a suitable volume.
● Binding to that volume.
● Finding the network address of a seed node.
● Connecting to the seed node and syncing

data.
● Election of new seed nodes.

Third party services (for example, GCS or S3 for
images) are extremely helpful for small teams.
Runtime replication has a large setup and ongoing
maintenance cost.

Service Coupling
We want to be able to tightly couple
service instances if they frequently
interact, to reduce network delays.

Many cloud platforms have a concept of
closely-linked services. In Kubernetes, a
deployment spec can define multiple
containers. Deployments create instances
called pods.

● Containers in a pod share a network
and optional volumes.
○ Creates 1:1 container state within a

pod.

● Containers in a pod are run on the same
machine.
○ Very fast network connection.

Service Coupling: What To Couple
● Databases and services that interact

directly with them.
○ Provided database replication

doesn’t spread undue constraints
to the service.

● Services that call one another.
○ Especially high with high

frequency or throughput.

● Services that share 1:1 instance state.

Service AService B

Service B Service A

Pod Example: File Puller

Disk

External
Data
Source

File puller Nginx

In this example, we pull files at runtime,
rather than building them into the Nginx
image.

This pattern can be useful for:

● Allowing content changes independently
of deployment rollouts.

● Directly passing on-disk resources
between services.

External
Data Source

Disk

File
Puller Nginx

Service Coupling: When Not To
If we couple too many services together, we see some consequences:

● Pods with persistent data stores are limited by data replication concerns
● Pods become harder to schedule, requiring more contiguous resources.
● Services can’t scale selectively. This allocates resources needlessly.
● Access controls typically apply pod-pod, not for within a pod.*

Sounds like a monolith…

* This is more of a platform-specific issue.

Internal API Calls
We can try to co-locate services that interact a
lot, but sometimes it’s not feasible.

Cloud platforms & distributed systems tend to
exaggerate intra-app latency:

● Running as independent pods increases latency.
● Splitting one service into two co-located services

increases latency.

Therefore, we want to be smart about how we build
our services and APIs, to reduce that back-and-forth.

Internal API Calls:
Sources of Delay
Substantial network delays normally stem from excessive
synchronous calls.

Use threads or async as much as you can!

There are other problems to improve/avoid. Most are in upstream service
designs, which force downstream services to make more calls than
necessary.

Internal API Calls: Simplifying API Actions
APIs are often designed around database CRUD,
rather than the high-level actions taken by
downstream systems.

EG: fetch normalized data, then use results to make
another fetch.

This can be avoided by adding endpoints that
encompass downstream actions.

Internal API Calls: Batch Endpoints
Use batch API endpoints for calls made repetitively.

Batch endpoints decrease network + auth overhead.

Batch endpoints can be used to leverage work common to individual
queries.

● Avoid repeating JOIN/WHERE/subquery work on database calls.
● Re-use data fetched in each call.
● Avoid re-transferring large payloads in the API call.
● Re-use initialized data structures.

SQL batch example: https://github.com/vllry/kubecon18-batch

Internal API Calls: Caching
Use caches for stateless services. This will save processing time, and
potentially network time.

Caches can be done server-side or client-side.

CacheService API

Service
Backend

Cache

Service API Service
Backend???

Client-side cache Server-side cache

Cache

Service API

Service
Backend

Cache

Service API Service
Backend

???

Testing

Cloud platforms and apps are still linked,
and not separate concerns.

We will need to bring in some
dependencies:

● Runtime engine (EG Docker)
● Config/secret injection
● Service routing/discovery
● Some coupled services

(EG upstream database)

Integration and end-to-end testing is crucial in multi-component systems
(which makes it a huge concern with microservices).

Testing:
Discrete components

We want to be able to isolate segments of
the app (EG a specific API endpoint), and
run those sections in isolation. This is similar
to unit testing scope concerns, on a much
bigger scale.

To isolate segments, we should try to
design dependencies in a “tree” fashion.
To test a given service, we need to
test/run (at most) that services and all
downstream services.

Testability (and development) should be a design decision.

Unit Testing Composition

def update_median():

values = db.fetch_all_thingy()

median =

statistics.median(values)

db.write_median(median)

def update_median():

values = db.fetch_all_thingy()

median = calculate_median(values)

db.write_median(median)

Awkward to test. # Still awkward to test, but the main logic is seperate.

def calculate_median(values):

return statistics.median(values)

Easy to test.

Service Testing Composition

Inventory
DB

Inventory Fetch
API

Inventory
Update API

Reporting API

Reporting
Backend

Inventory DB

Inventory
Update API

Inventory
Fetch API

Reporting
Backend

Reporting
API

Local Development

Try to make individual services friendly
to run natively, without necessarily
needing Docker. It can be unfriendly to
development, and developers may need
to work around Docker behavior (ruining
“the same anywhere” anyway).

● Limit dependencies (especially
circumstantial ones).

Testing concerns relate heavily to local development - devs probably don’t
want to build and run the entire app stack in Minikube.

● Limit OS sprawl.

If these are difficult, the service may be too
big and unspecialized.

That Was A Lot
What are the key takeaways?

● Many small but key details are
platform-specific.

● Platform/Ops specialists should be
active members of all architecture
decisions.

● Service composition has a huge
impact on performance, runtime
concerns, and testability. Couple
closely when performance requires
it, and avoid tight coupling
otherwise.

Some Suggested Reading
● “Architecting For Scale”, Lee Atchison
● “Designing Distributed Systems”, Brendan

Burns
● “The 12 Factor App”, Adam Wiggins,

https://12factor.net/
● “Cloud Native Infrastructure”, Justin Garrison &

Kris Nova
● Guides to the platform of your choice (EG

Kubernetes Up And Running)
● General material around building microservices,

and microservice madness.

https://12factor.net/

Time For Questions!
You can find me @vllry on Twitter.
(Or look for the hair this week.)

