
Building a Cloud Platform for Robots
Dhananjay Sathe, Lead rapyuta.io

@d_sathe

Task Offloading

The Genesis

RoboEarth Compute Environment

RoboEarth Compute Environment

RoboEarth Compute Environment

Networking in RoboEarth

It worked!

Collaborative 3D mapping Dynamic mobile manipulation

Re-imagining the platform

RoboEarth Architecture Overview

Containerization

 Issues
● No standard for describing a container

● Distribution of tarballs

● Changing dependency trees

● Exposing the right interfaces

Containerization

 Docker and Pods
● Dockerfile format

● Docker registry API

● Pods allow coupling software at runtime

 cri-o
● Host isolation

● Pluggable runtime

Control Plane

 Issues

● Scalability

● Day-2 operations nightmare

● Code modularity and maintainability

● Vendor support for IaaS providers

Control Plane

 Kubernetes API
● Battle tested at sufficient scale

● Rich ecosystem and tooling

● Modular extendable codebase

● cloud-controller-manager

Networking

Issues
● Complex multi-host port mapping

● Flaky SDN implementation

● Reconfiguration on node failure

● Limited protocol extensibility

● Centralized robot messaging endpoint

Networking

Networking in Kubernetes
● CNI - high performance L3 networking

● Variety of native of L4-L7 protocols

● Ingress + load-balancer for edge routing

● DNS based service discovery

● NetworkPolicy per robot bulkheading and

isolation

The Onset

The Culmination

Breaking out of the Datacenter

● Heterogeneous compute architectures

● Network reliability

● Configuration management and reproducibility

● Latency and temporal variations

A few challenges

Web Browser
(JS)

Robot
(C/C++)

Cloud
(Golang/Java)

Edge
(JS, Python)

The Anatomy of a Robotics Application

“kubectl is the new SSH…If you’re using kubectl to deploy from your laptop you’re
missing the point. If you’re doing it right no one should know you’re using
Kubernetes.”

● Must run anywhere

● Should have a unified declarative description

● Should have a unified set of API and Tools

A Platform Package

Package Manifest
{
 "apiVersion":"v1.0.0",
 "name":"cloud_pub_sub",
 "plans":[{
 "name":"default",
 "components":[{
 "name":"listener",
 "cloudInfra":{ "replicas":1},
 "requiredRuntime":"cloud",
 "executables":[{"docker":"rapyutians/listener, "cmd":["roslaunch listener listener.launch"]}],
 },{
 "name":"talker",
 "requiredRuntime":"device",
 "executables":[{
 "git":"https://github.com/rapyuta/talker", "cmd":["roslaunch talker talker.launch"]
 }],
 }
}

MultiArch-Build Engine

● Uniform tools lead to uniform lifecycle management

● Permit coupling of packages to build more complex applications

● Allow users to pick and choose packages and components from a private/public catalog

● Decouple development teams, organisations and skill-sets

Composing Applications from Packages

Package Composition

Package Composition

GetCatalog
Provision
Bind
Update
Unbind
Deprovision

Credentials

Open Service Broker API

Package Representation

The Platform Broker

The Platform Broker

The Platform Broker

Dynamic multi-robot orchestration

https://docs.google.com/file/d/17P_hPnLLfqiwVxTVoL1KDyHm0yUaUff3/preview

● VirtualKubelet

● Custom Resource Definitions

● Improvements to CNI, KubeProxy to eBPF

● TUF Conformance

Foreglimpse

Acknowledgements

Questions?

