
Building a Kubernetes on
Bare-Metal Cluster to Serve

Wikipedia

Alexandros Kosiaris
Giuseppe Lavagetto

Introduction
● The Wikimedia Foundation is the

organization running the infrastructure
supporting Wikipedia and other projects

● Monthly stats:
○ 17 Billion page views
○ 43 Million edits
○ 323 Thousands new registered users

Introduction (2)
● 2 Primary DCs (Ashburn, Dallas)
● 3 Caching DCs (San Francisco, Amsterdam,

Singapore)
● ~1200 hardware machines
● ~100 VMs

● Size of engineering: ~160 people
● SRE team: ~ 20 people (4 dedicated to the

application layer)
● We only write and use FLOSS

Reasons for
introducing
kubernetes

2014

2018

Also ● Elasticity
● Single-node failure management
● Containers
● Power to deployers!

● More moving parts
● New paradigm(™)
● Containers

But

Why on bare metal?

No public cloud

● User’s privacy guarantee
● Already maintaining our own

infrastructure and CDN
● Costs

No private cloud

● We actually run Kubernetes on OpenStack, for a
different project

● Reducing moving parts
● No practical advantages for production services

Cluster setup (1)
● We build our own Debian packages

○ Kubernetes 1.7 (on the way to 1.8 upgrade)
○ Calico 2.2.0
○ Etcd 2.2.1 (scheduled upgrade to 3.x)

● Configure all cluster components via Puppet
○ TLS included
○ But not the kubernetes resources!

● API servers are set up highly available (2 per cluster)
○ Kube-scheduler and kube-controller-manager run on the same hosts as apiserver

Cluster setup (2)
● 2 production clusters (1 per primary DC), 1 staging
● Separated Etcd clusters (3 servers, DC-local, on Ganeti VMs)
● Kube-proxy in iptables mode
● Docker as the runtime, but interested in rkt
● We host our own registry (and it’s the only allowed registry)

○ No image pulling from Dockerhub!
○ The backend of image storing is Openstack Swift
○ docker pull docker-registry.wikimedia.org/wikimedia-stretch:latest

Cluster setup (3)
● RBAC enabled since day #1 (we delayed rolling out a bit for that)
● 1 namespace per application/service
● Token-auth-file authentication
● Standard admission controllers for our version enabled
● Firewalling enabled on all nodes via ferm.

○ This works better than we feared!

Networking diagram

Networking
● Machines distributed per rack row for redundancy
● For backwards compatibility reasons we wanted to avoid overlay networking for pods

○ And calico fitted very nicely our networking model
● Calico BGP speakers on every node and the 2 routers
● No BGP Full mesh (cause the next hop is the router)

○ But will possibly have row specific full mesh
● RFC1918 10.x/8 address for the pods, but fully routable in our network.
● RFC1918 10.x/8 address for the Service IPs too, but:

○ Those are effectively just reservations
○ Are there to avoid surprises

● Pods have IPv6 address as well. Thank you Calico!
○ net.ipv6.conf.all.forwarding=1
○ net.ipv6.conf.eth0.accept_ra=2

Network Policies
● Kubernetes 1.7 does not support egress (but 1.8 does)

○ But Calico does
● Also does not allow changing a NetworkPolicy resource
● Alternative: We ‘ve patched calico-k8s-policy controller 0.6.0 (the python one)

○ Added reading a config file containing an enforced standard egress policy
○ Populate the file using a ConfigMap
○ Patch is minimal: 14 LoC in total
○ But also already deprecated. Next version is in Go

Ingress
● What about Ingress?

○ Evaluated it and decided to hold on it for now. We don’t even need the niceties yet.

● Use in-house python daemon running on load balancers (PyBal)
○ We do NodePort with externalIPs
○ And PyBal manages LVS DR entries on the load balancers

● A lot of expertise in house regarding PyBal, reusing it sounded the best approach
● Open Source: https://github.com/wikimedia/PyBal

https://github.com/wikimedia/PyBal

Metrics collection
● Infrastructure (Prometheus)

○ The discovery mechanisms rule
○ Polling all API servers
○ Polling all kubelets
○ Polling kubelet cAdvisors as well (hello kubernetes 1.7.3!!!)

● Applications (Prometheus, yes that too!)
○ Applications historically used statsd
○ prometheus_statsd_exporter in a sidecar container, applications talk to localhost :-)
○ Prometheus discovers and polls all pods

● https://grafana.wikimedia.org/dashboard/db/kubernetes

https://grafana.wikimedia.org/dashboard/db/kubernetes?orgId=1

Alerting
● Prometheus again! Albeit only partly
● Still on icinga 1.11.6
● Started by using check_prometheus_metric.sh

○ And it did not support floats
○ Rewrote the whole thing in python

● Add in Puppet and the checks can be a bit intimidating to look at
○ query => "scalar(\

 sum(rate(kubelet_runtime_operations_latency_microseconds_sum{\
 job=\"k8s-node\", instance=\"${::fqdn}\"}[5m]))/ \
 sum(rate(kubelet_runtime_operations_latency_microseconds_count{\
 job=\"k8s-node\", instance=\"${::fqdn}\"}[5m])))",

● Swagger spec based monitoring to instrument checks
○ https://github.com/wikimedia/operations-software-service-checker

https://github.com/wikimedia/operations-software-service-checker

Streamlined Service
Delivery
We re-thought the whole software lifecycle for things that will run on

Kubernetes, from development to deployment

Deployment
Helm setup:
● Tiller resides on the namespace of the application

and has specific RBAC rights
● A “deploy” user is only granted rights to talk to

Tiller
● Unix users with rights to deploy to a namespace

get access to the corresponding credentials
● A simple wrapper around helm ensures the

correct credentials are used

Deployment
Also:
● Deploy to both datacenters
● We (will) support canary deployments

● 2 helm releases, “canary” and “production”
● Only production declares a Service, which

selects all pods from both releases
● New release of the software goes to

“canary”, once all tests and metrics are
green, it gets deployed to “production”

● Goal is to rewrite the wrapper as helm plugins

Our own (very new!) helm repo:
https://releases.wikimedia.org/charts/

https://releases.wikimedia.org/charts/

THANK YOU

SRE team is hiring!
https://jobs.wikimedia.org

https://github.com/wikimedia/PyBal
https://grafana.wikimedia.org/dashboard/db/kubernetes
https://github.com/wikimedia/operations-software-service-checker
https://releases.wikimedia.org/charts/
https://docker-registry.wikimedia.org

https://jobs.wikimedia.org
https://github.com/wikimedia/PyBal
https://grafana.wikimedia.org/dashboard/db/kubernetes?orgId=1
https://github.com/wikimedia/operations-software-service-checker
https://releases.wikimedia.org/charts/
https://docker-registry.wikimedia.org

Questions?

