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Containers are amazing! 

• Year 2013: Docker Inc. released its container engine
• Million downloads and about 8,000 docker images that 

year
• Now the technology has really taken off

• ESG survey shows about 40% of companies are using 
containers

• Docker Inc. reports > 29 million downloads
• Google has been developing and using containers to 

manage our applications for more than a decade.
• Launch over 4 billion containers per week. 



But not contained! 

• Security concerns remain
• ESG survey shows 94% felt that containers negatively affect security

• The last decade has seen a lot of work on isolation mechanisms
• Namespaces
• Cgroups
• Users
• Capabilities
• Chroot
• Seccomp
• Linux Security Modules (LSM)



Prior to Borg: Run as root 
 

• All devices accessible

• Host filesystem accessible

• All resources consumable

• Network reconfigurable

• Can perform any kernel call

• Can SIGKILL others

  root  234  /bin/sh



Prior to Borg: Run as root 
 

What if anything goes wrong? 

• A bug in a script

$ rm -rf $(UNDEFINED_DIR)/*

• Or malicious software?

  root  234  /bin/sh



  root  234  /bin/sh

Prior to Borg: Container as root 

Nothing shields the system!



User / Group

Run as unprivileged user

• Limited devices access including 
network device

• Limited filesystem access

• Permissions of kernel calls are 
checked before execute

• Limited ability to send signals

But if setuid? 

 one  234  /bin/sh



capabilities

Drop capabilities

• Examples of dropped capabilities:
SYS_MODULE, SYS_ADMIN, SYS_TIME, 
SYS_RESOURCE, NET_ADMIN, SYS_LOG, …

• Fewer capabilities, better isolation!

Now ok with privilege isolation, what about resource isolation?

User / Group

 one  234  /bin/sh



cgroup

Apply CGroups

• Cgroup limits, accounts for, and isolates 
the resource usage:

• cpu - limits access to the CPU
• cpuacct - accounts cpu usage by cgroup
• cpuset - assign cores & memory nodes to cgroup
• devices - control device access by cgroup
• memory - limits & accounts memory usage

          and more

But still can see all processes, network interfaces, mount 
points on the system!

capabilities

User / Group

 one  234  /bin/sh



namespace

Apply namespace

• Provide isolation for each namespace type

• Currently support 7 different namespaces:

Network, PID, mount, user, IPC, UTS, 
cgroup

• More to come

Is this enough?

cgroup

capabilities

User / Group

 one  234  /bin/sh



Still ... 

● The kernel supports several alternative ways to configure 
fine-grained access control per process, using Mandatory 
Access Control:
○ SELinux
○ AppArmor

● "secure computing mode" - but really we mean seccomp-bpf
○ Filter syscalls

“Containers do not contain”
                        --- Dan Walsh, 2014



Not quite yet ..

• “Each container also gets its own network stack” (from 
Docker security site).

• Not really. It just has its own interface, but uses the same linux 
TCP/IP stack.

• CVE-2013-4348 A single malformed packet from remote can crash 
your kernel

• There are more ... 
• CVE-2016-5195 DirtyCOW
• CVE-2017-5753/5715/5754 Spectre/Meltdown



Why?

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

• Still sharing the same kernel
• Share same device drivers
• Linux kernel represents a large 

attack surface.
• CGroup accounting may not be 

accurate



What is Next?



As a Container Fan, I wish 

1. An image I pulled from a random corner of the world should 
not exploit my Linux box.

2. Little work or no work required from me.
• Not overly restricted
• No modification to the application

3. Feels like a container
• Fast startup
• Cheap to run: low memory consumption



As a Security Engineer, I know

• I need more than one security layer between a untrusted 
workload and my Bitcoin wallet.

• So that no single compromise can steal all of my coins. 
user data

production job



Rethink Container Isolation 

Containers

Linux Kernel

Hardware

System Calls

User Space

Kernel Space



Linux Fun Facts

• 319 native 64-bit syscalls in 
Linux x86_64

grep x64 arch/x86/entry/syscalls/syscall_64.tbl

• 2046 CVEs since 1999
• 257 Privilege escalations

Lines of Code in Linux kernel 

https://www.linuxcounter.net/statistics/kernel



Sandbox 

• Sandbox is an effective layer to reduce the attack surface.

sandbox sandbox

kernel

host

attacker app



Recap: Rule-based Sandbox 

• AppArmor, SELinux, Seccomp-bpf

sandbox

kernel

app Reduce the attack 
surface by restricting 
what the application 
can access.

Open 
/etc/passwd

Open
/home/..)



Linux Security Modules

• A framework used by AppArmor, 
SELinux

• Kernel-module enforcing rules

• http://stopdisablingselinux.com/

/usr/sbin/tcpdump {
  #include <abstractions/base>
  #include <abstractions/nameservice>
  #include <abstractions/user-tmp>

  capability net_raw,
  capability setuid,
  capability setgid,
  capability dac_override,
  network raw,
  network packet,

  # for -D
  capability sys_module,
  @{PROC}/bus/usb/ r,
  @{PROC}/bus/usb/** r,

  # for -F and -w
  audit deny @{HOME}/.* mrwkl,
  audit deny @{HOME}/.*/ rw,
  audit deny @{HOME}/.*/** mrwkl,
  audit deny @{HOME}/bin/ rw,
  audit deny @{HOME}/bin/** mrwkl,
  @{HOME}/ r,
  @{HOME}/** rw,

  /usr/sbin/tcpdump r,
}



Syscall Filtering

• ptrace 
• Checking in userspace. Vulnerable to 

TOCTOU if multi-threaded.
• Seccomp-bpf

• In-kernel 
• Multi-threading safe (after TSYNC)

• Alt-syscall 
• Slightly faster (O(1) lookup time)
• Not as flexible as seccomp-bpf

 #define VALIDATE_ARCHITECTURE \
     BPF_STMT(BPF_LD+BPF_W+BPF_ABS, arch_nr), \
     BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ARCH_NR, 1, 0), \
     BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)
 
 #define EXAMINE_SYSCALL \
     BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_nr)
 
 #define ALLOW_SYSCALL(name) \
     BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_##name, 0, 1), \
     BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)
 
 #define KILL_PROCESS \
     BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)



Still not so easy 

• Writing the rules are tedious
• Smart engineers like @jessfraz will automate it.

• The rules are fragile
• Overfitting or underfitting
• Friendly reminder: Go users, don’t forget to include epoll_pwait 

in your seccomp filters. http://golang.org/cl/92895
• Not completely secure
• Spectre/Meltdown



Hypervisor-based

• Universal!
• Strong Isolation

• Heavy weight
• Extra software 

(Hypervisor+VMM+Guest Kernel)
• Inflexible resource boundaries

• Linux needs to know the number of 
CPUs/Memory at boot kernel

app
Open 
/etc/passwd

Open
/home/..)

Guest kernel

VM



Rethink Containers Isolation 
Provided by VMs
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Lesson Learned

• Key Ingredients:
• Independent Kernel
• Virtualization hardware is an important defensive layer

• Clear privilege separation and state encapsulation 

• Collaterals:
• Virtualized hardware interface

• Inflexible
• Obscure primitives (I/O ports, interrupts, exceptions) 

• The Linux kernel
• One-size-fit-all
• Monolithic (everything in the same address space)



Our Approach -- gVisor
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What is it really?

• Sandboxes untrusted applications
• Implements Linux system API in user space

• 211 syscalls so far
• Not a port like UML or LKL
• Not just filters (as opposed to seccomp-bpf)
• Runs unmodified Linux binaries (as opposed to NaCL)

• Secure by default
• No filter configuration, AppArmor or SElinux policies
• One kernel per sandbox

• Written in Go, a memory/type-safe language 
• Save/Restore is a first-class citizen



Runsc: An OCI runtime powered by gVisor

KVM

Gofer

Host Kernel 

Application Sentry

UNPRIVILEGED PROCESS

User

Kernel

9P

seccomp + ns

runsc

OCI



Made for Containers

150ms
startup time*

15MB
memory overhead*

• Use as you go: no fixed resource
• Easy to debug
• ….

*collected with /bin/true and /bin/sleep



Cautions

What it IS good for:

● Small containers
● Spin up quickly
● High density

What it’s NOT good for:

● Trusted images
● Syscall heavy workloads
● Direct access to hardware, i.e. 

passthrough device support





Wanna Try?

• Go to: https://github.com/google/gvisor
• 6 commands, then you are good to go 

$ docker run --runtime=runsc hello-world

$ docker run --runtime=runsc -p 3306:3306 mysql



Want more?

• Talk to us at the gVisor booth.
• Join: https://groups.google.com/forum/#!forum/gvisor-users
• Get involved:

• https://github.com/google/gvisor
• Join sig-node for discussion

• Other talks:
• Secure Pods (Fri, 5/4 11:10 - 11:45)
• Kubernetes Runtime Security (Fri, 5/4 14:45 - 15:20)



Questions?


