
Container Isolation at Scale
(... and introducing gVisor)

Dawn Chen and Zhengyu He

Containers are amazing!

• Year 2013: Docker Inc. released its container engine
• Million downloads and about 8,000 docker images that

year
• Now the technology has really taken off

• ESG survey shows about 40% of companies are using
containers

• Docker Inc. reports > 29 million downloads
• Google has been developing and using containers to

manage our applications for more than a decade.
• Launch over 4 billion containers per week.

But not contained!

• Security concerns remain
• ESG survey shows 94% felt that containers negatively affect security

• The last decade has seen a lot of work on isolation mechanisms
• Namespaces
• Cgroups
• Users
• Capabilities
• Chroot
• Seccomp
• Linux Security Modules (LSM)

Prior to Borg: Run as root

• All devices accessible

• Host filesystem accessible

• All resources consumable

• Network reconfigurable

• Can perform any kernel call

• Can SIGKILL others

 root 234 /bin/sh

Prior to Borg: Run as root

What if anything goes wrong?

• A bug in a script

$ rm -rf $(UNDEFINED_DIR)/*

• Or malicious software?

 root 234 /bin/sh

 root 234 /bin/sh

Prior to Borg: Container as root

Nothing shields the system!

User / Group

Run as unprivileged user

• Limited devices access including
network device

• Limited filesystem access

• Permissions of kernel calls are
checked before execute

• Limited ability to send signals

But if setuid?

 one 234 /bin/sh

capabilities

Drop capabilities

• Examples of dropped capabilities:
SYS_MODULE, SYS_ADMIN, SYS_TIME,
SYS_RESOURCE, NET_ADMIN, SYS_LOG, …

• Fewer capabilities, better isolation!

Now ok with privilege isolation, what about resource isolation?

User / Group

 one 234 /bin/sh

cgroup

Apply CGroups

• Cgroup limits, accounts for, and isolates
the resource usage:

• cpu - limits access to the CPU
• cpuacct - accounts cpu usage by cgroup
• cpuset - assign cores & memory nodes to cgroup
• devices - control device access by cgroup
• memory - limits & accounts memory usage

 and more

But still can see all processes, network interfaces, mount
points on the system!

capabilities

User / Group

 one 234 /bin/sh

namespace

Apply namespace

• Provide isolation for each namespace type

• Currently support 7 different namespaces:

Network, PID, mount, user, IPC, UTS,
cgroup

• More to come

Is this enough?

cgroup

capabilities

User / Group

 one 234 /bin/sh

Still ...

● The kernel supports several alternative ways to configure
fine-grained access control per process, using Mandatory
Access Control:
○ SELinux
○ AppArmor

● "secure computing mode" - but really we mean seccomp-bpf
○ Filter syscalls

“Containers do not contain”
 --- Dan Walsh, 2014

Not quite yet ..

• “Each container also gets its own network stack” (from
Docker security site).

• Not really. It just has its own interface, but uses the same linux
TCP/IP stack.

• CVE-2013-4348 A single malformed packet from remote can crash
your kernel

• There are more ...
• CVE-2016-5195 DirtyCOW
• CVE-2017-5753/5715/5754 Spectre/Meltdown

Why?

https://www.cvedetails.com/product/47/Linux-Linux-Kernel.html?vendor_id=33

• Still sharing the same kernel
• Share same device drivers
• Linux kernel represents a large

attack surface.
• CGroup accounting may not be

accurate

What is Next?

As a Container Fan, I wish

1. An image I pulled from a random corner of the world should
not exploit my Linux box.

2. Little work or no work required from me.
• Not overly restricted
• No modification to the application

3. Feels like a container
• Fast startup
• Cheap to run: low memory consumption

As a Security Engineer, I know

• I need more than one security layer between a untrusted
workload and my Bitcoin wallet.

• So that no single compromise can steal all of my coins.
user data

production job

Rethink Container Isolation

Containers

Linux Kernel

Hardware

System Calls

User Space

Kernel Space

Linux Fun Facts

• 319 native 64-bit syscalls in
Linux x86_64

grep x64 arch/x86/entry/syscalls/syscall_64.tbl

• 2046 CVEs since 1999
• 257 Privilege escalations

Lines of Code in Linux kernel

https://www.linuxcounter.net/statistics/kernel

Sandbox

• Sandbox is an effective layer to reduce the attack surface.

sandbox sandbox

kernel

host

attacker app

Recap: Rule-based Sandbox

• AppArmor, SELinux, Seccomp-bpf

sandbox

kernel

app Reduce the attack
surface by restricting
what the application
can access.

Open
/etc/passwd

Open
/home/..)

Linux Security Modules

• A framework used by AppArmor,
SELinux

• Kernel-module enforcing rules

• http://stopdisablingselinux.com/

/usr/sbin/tcpdump {
 #include <abstractions/base>
 #include <abstractions/nameservice>
 #include <abstractions/user-tmp>

 capability net_raw,
 capability setuid,
 capability setgid,
 capability dac_override,
 network raw,
 network packet,

 # for -D
 capability sys_module,
 @{PROC}/bus/usb/ r,
 @{PROC}/bus/usb/** r,

 # for -F and -w
 audit deny @{HOME}/.* mrwkl,
 audit deny @{HOME}/.*/ rw,
 audit deny @{HOME}/.*/** mrwkl,
 audit deny @{HOME}/bin/ rw,
 audit deny @{HOME}/bin/** mrwkl,
 @{HOME}/ r,
 @{HOME}/** rw,

 /usr/sbin/tcpdump r,
}

Syscall Filtering

• ptrace
• Checking in userspace. Vulnerable to

TOCTOU if multi-threaded.
• Seccomp-bpf

• In-kernel
• Multi-threading safe (after TSYNC)

• Alt-syscall
• Slightly faster (O(1) lookup time)
• Not as flexible as seccomp-bpf

 #define VALIDATE_ARCHITECTURE \
 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, arch_nr), \
 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ARCH_NR, 1, 0), \
 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

 #define EXAMINE_SYSCALL \
 BPF_STMT(BPF_LD+BPF_W+BPF_ABS, syscall_nr)

 #define ALLOW_SYSCALL(name) \
 BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, __NR_##name, 0, 1), \
 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_ALLOW)

 #define KILL_PROCESS \
 BPF_STMT(BPF_RET+BPF_K, SECCOMP_RET_KILL)

Still not so easy

• Writing the rules are tedious
• Smart engineers like @jessfraz will automate it.

• The rules are fragile
• Overfitting or underfitting
• Friendly reminder: Go users, don’t forget to include epoll_pwait

in your seccomp filters. http://golang.org/cl/92895
• Not completely secure
• Spectre/Meltdown

Hypervisor-based

• Universal!
• Strong Isolation

• Heavy weight
• Extra software

(Hypervisor+VMM+Guest Kernel)
• Inflexible resource boundaries

• Linux needs to know the number of
CPUs/Memory at boot kernel

app
Open
/etc/passwd

Open
/home/..)

Guest kernel

VM

Rethink Containers Isolation
Provided by VMs

Container

Guest Kernel

Virtual Hardware

System Calls

VMM

System Calls

Host Kernel

Hardware

Ind
ep

en
de

nt

Kern
el

Virtu
ali

za
tio

n

-ba
se

d

Stro
ng

Iso
lat

ion

Lesson Learned

• Key Ingredients:
• Independent Kernel
• Virtualization hardware is an important defensive layer

• Clear privilege separation and state encapsulation

• Collaterals:
• Virtualized hardware interface

• Inflexible
• Obscure primitives (I/O ports, interrupts, exceptions)

• The Linux kernel
• One-size-fit-all
• Monolithic (everything in the same address space)

Our Approach -- gVisor

Container

gVisor

System Calls

Limited System Calls

Host Kernel

Hardware

Ind
ep

en
de

nt

Kern
el

Virtu
ali

za
tio

n

-ba
se

d

Stro
ng

Iso
lat

ion

What is it really?

• Sandboxes untrusted applications
• Implements Linux system API in user space

• 211 syscalls so far
• Not a port like UML or LKL
• Not just filters (as opposed to seccomp-bpf)
• Runs unmodified Linux binaries (as opposed to NaCL)

• Secure by default
• No filter configuration, AppArmor or SElinux policies
• One kernel per sandbox

• Written in Go, a memory/type-safe language
• Save/Restore is a first-class citizen

Runsc: An OCI runtime powered by gVisor

KVM

Gofer

Host Kernel

Application Sentry

UNPRIVILEGED PROCESS

User

Kernel

9P

seccomp + ns

runsc

OCI

Made for Containers

150ms
startup time*

15MB
memory overhead*

• Use as you go: no fixed resource
• Easy to debug
• ….

*collected with /bin/true and /bin/sleep

Cautions

What it IS good for:

● Small containers
● Spin up quickly
● High density

What it’s NOT good for:

● Trusted images
● Syscall heavy workloads
● Direct access to hardware, i.e.

passthrough device support

Wanna Try?

• Go to: https://github.com/google/gvisor
• 6 commands, then you are good to go

$ docker run --runtime=runsc hello-world

$ docker run --runtime=runsc -p 3306:3306 mysql

Want more?

• Talk to us at the gVisor booth.
• Join: https://groups.google.com/forum/#!forum/gvisor-users
• Get involved:

• https://github.com/google/gvisor
• Join sig-node for discussion

• Other talks:
• Secure Pods (Fri, 5/4 11:10 - 11:45)
• Kubernetes Runtime Security (Fri, 5/4 14:45 - 15:20)

Questions?

