
building a production-ready serverless stack on and for Kubernetes

David Grove
Apache OpenWhisk Committer
IBM Research

May 4, 2018

Apache OpenWhisk on Kubernetes

Agenda

§ Apache OpenWhisk

§ Implementation and Deployment Architecture
– Critical path of invoking a function
– Container management alternatives
– Empirical results

§ Beyond simple functions: Serverless composition of Serverless functions

§ Future Directions

2

Apache OpenWhisk

§ Production-ready open source Functions-as-a-Service (FaaS)
– Core FaaS runtime, CLI, language runtimes, provider packages and SDKs
– Polyglot: JavaScript, Python, Swift, Java, PHP, Go, ... + “blackbox” containers
– Extensible & pluggable

§ Service Provider Interfaces (SPIs) between many components
§ Additional language runtimes, provider packages, SDKs, etc.
§ Deployment options: docker-compose, VMs, Kubernetes, Mesos, OpenShift, …

§ Hosted commercial deployments by IBM, Adobe, …

§ Apache incubator project
– Active open source developer + user community
– Working towards official releases & graduation from incubation

3

OpenWhisk on Kubernetes

§ Major stages of work
1. Deploy OpenWhisk runtime containers as StatefulSets, DaemonSets, etc.
2. Adjust OpenWhisk code/configuration/deployment to better fit Kubernetes
3. Exploit Kubernetes capabilities to simplify OpenWhisk (early stages)

§ https://github.com/apache/incubator-openwhisk-deploy-kube
– Supports multiple versions of Minikube + Kubernetes
– Configuration files + deployment scripts for Minikube, single, and multi-node clusters
– Helm chart NEW!

§ Demo later…

4

https://github.com/apache/incubator-openwhisk-deploy-kube

Underlying assumptions

§ What does “production ready” imply?
– Large scale – many, many, many millions of function invocations a day
– Replicated components – fault-tolerance & scalability
– Multi-tenant – isolation & security when executing arbitrary code from many users
– Integration with Provider’s Cloud Platform – IAM, logging, metrics, service bindings, …

§ Emphasis on low latency and minimizing system overhead
– Interactive applications: mobile backends, chatbots, …
– Pipelines & compositions – one user request may spawn many function invocations
– Short running functions – harder to amortize system overheads

5

Invoking a Function

§ OpenWhisk executes each <user, function> in distinct containers

§ A container may be reused to execute multiple invocations of its unique <user, function>

§ Container scheduling, caching, and re-use are essential for scalable performance

6

User Container Life Cycle

7

create

/init /run resumesuspend

prealloc destroy

Maintain pool of “stem cell” containers
for heavily used language runtimes

< grace period (50ms)

grace period expires

> idle limit or
LRU eviction

“cold”

“pre-warmed”

“hot”

“warm”

Critical Path of Function Invocation

8

Ingress

Controller Kafka Invoker User
Container

Ingress
• SSL termination
• Forward to appropriate controller

f(x,y)

Critical Path of Function Invocation

9

Ingress

Controller Kafka Invoker
User
Container

Controller
• Maintains open http connection for blocking invocation
• Authenticates actor & authorizes resource access
• Admission control (per-actor limits)
• Load Balancer: select invoker to handle this invocation

f(x,y)

Load Balancer Algorithm

10

Invoker

User Container
User Container

User Container
User Container

User Container

Invoker

User Container
User Container

User Container

…

Controller Controller…

Invoker

User Container
User Container

User Container
User Container

User Container
User Container

User Container

Goal: minimize invocation latency and maximize system throughput
Challenge: scale, replication, and rapid state change
Currently: heuristically use hashing for locality and queue length to approx. load

SPI: enable algorithmic exploration

Critical Path of Function Invocation

11

Ingress

Controller Kafka Invoker User
Container

Kafka
• One topic (queue) per invoker to hold backlog

f(x,y)

Critical Path of Function Invocation

12

Ingress

Controller Kafka Invoker User
Container

Invoker
• Select (create) container to execute request
• Invoke action and await results
• Enqueue result in initiating controller’s “completed” topic
• Extract user container logs & forward to logging service

f(x,y)

result

Critical Path of Function Invocation

13

Ingress

Controller Kafka Invoker User
Container

Kafka
• One completed topic per controller to hold backlog

result

Critical Path of Function Invocation

14

Ingress

Controller Kafka Invoker User
Container

Controller
• If blocking request, return result on open http connection

result

Invoker – ContainerFactorySPI

§ Pluggable abstraction for container engines
– DockerContainerFactory
– KubernetesContainerFactory
– MesosContainerFactory
– …

§ OpenWhisk on Kubernetes uses:
– DockerContainerFactory
– KubernetesContainerFactory

Invoker - DockerContainerFactory

16

Invoker

User
Container

User
Container

User
Container

…

docker

create
destroy
suspend
resume
logs

/init /run

Worker Node (role=invoker)

Kubernetes manages
OpenWhisk control plane, but
not user containers

Invoker - KubernetesContainerFactory

17

Invoker

/init
/run

Kubernetes
Scheduler

Worker Node
(role=invoker)

create
destroy
logs

User
Container

User
Container

User
Container

User
Container Worker Node

(role=invoker)

Invoker – KubernetesContainerFactory + InvokerAgent

18

Invoker

/init
/run

Kubernetes
Scheduler

Worker Node
(role=invoker)

create
destroy

User
Container

User
ContainerInvokerAgent

docker

suspend resume logs

User
Container

User
ContainerInvokerAgent

docker

suspend resume logs
Worker Node
(role=invoker)

suspend
resume
logs

Experimental Setup

§ Goal: understand current performance of ContainerFactory implementations
– What is the cold start latency?
– What is the latency when able to re-use a container?
– Are there throughput differences? If so, why?

§ Kubernetes 1.8.8 cluster with 13 worker nodes
– 2 control plane nodes (16 core x 64GB) + 1 load driver node (16 core x 64 GB)
– 10 invoker nodes (4 core x 16 GB)

§ All experiments
– Measure full path, starting with Ingress
– Test driver runs on load driver node (eliminate variable network delays)
– Use trivial “no-op” actions to emphasize system overheads

Latency Results

§ Measure response time for serially invoking a blocking function (10,000 iterations)

20

Scenario Container Factory P50
(ms)

P90
(ms)

P95
(ms)

P99
(ms)

Cold Start
Docker 720 764 787 1,017
Kubernetes

2,069 2,612 2,949 3,423
Kubernetes + IA

Warm Container
Docker 7 8 11 36
Kubernetes 19 44 214 602
Kubernetes + IA 8 11 13 24

Throughput Results

§ Workload: load test of many concurrent non-blocking invocations

Analysis:
– Higher log extraction latency

delays container reuse,
reducing overall maximum
achievable throughput

0

0.2

0.4

0.6

0.8

1

1.2

Docker Kubernetes Kubernetes+IA

No
rm

al
ize

d
Th

ro
ug

hp
ut

(h
ig

er
 is

 b
et

te
r)

10% 4%

Takeaways / Future Work

§ Higher cold-start costs (scheduling, pod creation)
– Significant latency impact for short-running functions
– Emphasizes importance of container re-use and caching

§ Even though log extraction is “off the critical path” its performance still matters
– Compute load on “idle” invokers (latency of Kubernetes vs. Kubernetes+IA)
– Reduction in overall system throughput

Agenda

§ Apache OpenWhisk

§ Implementation and Deployment Architecture
– Critical path of invoking a function
– Container management alternatives
– Empirical results

§ Beyond simple functions: Serverless composition of Serverless functions

§ Future Directions

23

Rethink the cloud programming experience

We are programming a cloud computer.

Can we provide a useful computer-like facade over a distributed system?

Can we do this by writing actual programs,

and have productivity enhancing tools available to help us?

24

Demo – Composer + Fsh

§ Notify me via Slack when Travis finishes testing my pull request

25

https://github.com/rabbah/travis-to-slack

Demo – Composer + Fsh

Demo – Composer + Fsh

What did we just see?

§ We can build a more computer-like programming environment for the Cloud!

§ Composer

– Familiar programming constructs: variables, control structures, …

– Embedded (JavaScript) Domain Specific Language to compose polyglot applications

§ Shell

– Electron-based REPL that runs locally on developer’s machine

– Rich visualizations to support programming tasks

– Smooth integration with CLI, code editors, etc.

28

Ongoing Work

§ OpenWhisk on Kubernetes
– Scalability and performance
– Enhancement of KubernetesContainerFactory-based Invoker

§ Larger container pools è more options for scheduling/caching policies
§ Fuller integration with Kubernetes scheduler (but latency/scale may be challenging)

– Better exploitation of Kubernetes deployment and management capabilities
– Smoother developer transition between FaaS and Kubernetes-deployed microservices

§ Composer/Shell
– Next major step in evolution of cloud developer experience?’
– Active area of research and development

Get Involved

§ OpenWhisk
– Web: https://openwhisk.apache.org/
– GitHub:

§ https://github.com/apache/incubator-openwhisk
§ https://github.com/apache/incubator-openwhisk-deploy-kube

– Slack: http://slack.openwhisk.org/

§ Composer/Shell
– https://github.com/ibm-functions/composer
– https://github.com/ibm-functions/shell

https://openwhisk.apache.org/
https://github.com/apache/incubator-openwhisk
https://github.com/apache/incubator-openwhisk-deploy-kube
http://slack.openwhisk.org/
https://github.com/ibm-functions/composer
https://github.com/ibm-functions/shell

