kubectl apply

...and the dark art of declarative object management

Aaron Levy
CoreOS
github/slack: @aaronlevy

Why "the dark art"?

e Because Harry Potter references get your talk accepted
And...

e Because kubectl apply may not behave how you expect

Why "the dark art"?

My original understanding of the " kubectl apply " behavior:

It... "applies" configuration, right?

$ kubectl apply —--help

Apply a configuration to a resource by filename or
stdin. This resource will be created if it doesn't
exist yet.

e Perfect. Talk over.

Why "the dark art"?

When | started more heavily using 'apply’, | started to see:
e |nconsistent behavior across various object types
e Inconsistent behavior across various fields

e Unexpected (and somewhat vague) errors

*most of these were my fault

Why "the dark art"?

| didn't really understand how 'apply' worked.
So | began digging into the behavior:

How are field values calculated?

How are patches generated?

How is the final object generated?

Is the functionality client or server side (or both)?

What does kubectl apply do?

kubectl apply --help

e When invoked, does a three-way diff between
the previous configuration, the provided input
and the current configuration of the resource,
in order to determine how to modify the
resource.

e Applies the changes you’ve made, without

overwriting changes to properties you haven’t
specified.

How "apply changes are calculated

Calculating the changes to the object are done by evaluating three sources:

e Object configuration file
o Afile that defines the configuration for a Kubernetes object.

e Live object configuration
o The object as it exists in the Kubernetes cluster

e LastApplied Configuration
o View of the object the last time “apply was invoked

Create object

S kubectl apply --filename my-app.yaml

Creates object(s), but also sets the annotation:
kubectl.kubernetes.io/last-applied-configuration

e Set to match the object configuration file.
e Used to compute field add/update/delete

last-applied-configuration

Base Object
kind: Deployment
metadata:

apiVersion: apps/vlbetal

apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: my-app
annotations:
kubectl.kubernetes.io/last-applied-configuration: |
{"apiVersion":"apps/vlbetal","kind":"Deployment","metadata":
{"annotations":{},"name":"my-app","namespace" :"default"},"sp

name: my—app ec": {"template" :{"metadata":{"labels": {uappu . umy_appn}}’ "spe
spec: e c":{"containers":[{"image":"my-app:v1l","name": "my-app"}]13}1}}
template: =P
t late:
metadata: eEZtZdzta-
labels: labels:
app: my—-app app: my-app
spec: spec:
: containers:
containers: - name: my-app
— nName: my-—-app image: myapp:vl

image: my-app:vl

Example of adding a field

Local Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: my-app
spec:

template:
spec:
containers:
- name: my-app
image: myapp:vl

Last Applied

*xpart of the live object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

$ kubectl apply --filename my-app.yaml
Exists in local, but not on last-applied/live.

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Local Object

Last Applied

*xpart of the live object

Live Object

apiVersion: apps/vlbetal
kind: Deployment

metadata:
name: my-app
spec:

minReadySeconds: 5
template:
spec:
containers:
- name: my-app
image: myapp:vl

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
minReadySeconds: 5
template:
spec:
containers:
- name: my-app
image: myapp:vl

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
minReadySeconds: 5
template:
spec:
containers:
- name: my-app
image: myapp:vl

Field has been added to live object, and the last-applied
annotation (to be used in future calculations).

Example of deleting a field

Local Object

Last Applied

*xpart of the live object

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
minReadySeconds: 5
template:
spec:
containers:
- name: my-app
image: myapp:vl

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
minReadySeconds: 5
template:
spec:
containers:
- name: my-app
image: myapp:vl

$ kubectl apply --filename my-app.yaml
Exists in last/live, but not in local object. Action: Delete

Local Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Last Applied

*xpart of the live object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Field removed from last-applied annotation, and live object.

Okay, it can add and remove fields.

What else?

Preserving & Enforcing Fields

Allow some fields to be "enforced" by being specified as part
of your object configuration .

If a field is left unspecified, it will be ignored during the patch
calculations.

Leaving some fields able to be controlled by other
components. For example, an autoscaler managing replicas.

Local Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Last Applied

*xpart of the live object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: my-app
spec:

template:
spec:
containers:
- name: my-app
image: myapp:vl

Replica count only exists in the live object. It is not
defined in our local config (do not change during apply).

Local Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Last Applied

*xpart of the live object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:

name: my-app
spec:

template:
spec:
containers:
- name: my-app
image: myapp:vl

Increase replica count external to the object configuration.
$ kubectl scale deployment/my-app --replicas=5

Local Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image:

We now want to update the container image:

Last Applied

*xpart of the live object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image: myapp:vl

$ kubectl apply --filename my-app.yaml

Live Object

apiVersion: apps/vlbetal
kind: Deployment

metadata:
name: my-app
spec:
replicas: 5
template:
spec:

containers:
- name: my-app
image: myapp:vl

Local Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image:

Last Applied

*xpart of the live object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
spec:
containers:
- name: my-app
image:

Live Object

apiVersion: apps/vlbetal
kind: Deployment

metadata:
name: my-app
spec:
replicas: 5
template:
spec:

containers:
- name: my-app

Container image is changed, while replica count in live
object 1is dignored / preserved during the update.

Let's talk about merge calculations

We've seen how " kubectl apply” can add, update, remove,
and preserve object fields.

But how are these field values being calculated?

Merge Calculations

There are several ways that different field types can be merged:

e Primitives / string, int, boolean (examples: image, replicas)
o Action: Replace

e Maps/ objects (examples: labels, metadata, spec)
o Action: Merge elements, or subfields

e Lists (examples: containers, ports, args)
o Action: Depends...

Merge Calculations - Lists

Several strategies, which depends on the field:

e Replace entire list in-place
e Merge elementsin a list of objects

Local Object

Last Applied

x*xpart of the live object

Live Object

containers:

- name: my-app
image: myapp:v2
ar—gS: [llall, ”C”:I

containers:

- name: my-app
image: myapp:v2
argS: [llall, Hbll]

containers:
- name: my-app
image: myapp:v2
argS: [llall’ llbll’ lldll:l

S kubectl apply --filename my-app.yaml

containers:

- name: my-app
image: myapp:v2
argS: [Ilall’ ”C”]

containers:

- name: my-app
image: myapp:v2
args: [Ilall, "C"]

containers:

- name: my-app
image: myapp:v2
args: [llall, "C"]

Merge Calculations - Lists (Objects)

Local Object

Last Applied

*xpart of the live object

Live Object

containers:
- name: app
image: app:vl
- name: sidecar
image: sidecar:v0.1.0

containers:
- name: app
image: app:vl

containers:

- name: app
image: app:vl
args: ["prod"]

S kubectl apply --filename app.yaml

containers:
- name: app
image: app:vl
- name: sidecar
image: sidecar:v0.1.0

containers:
- name: app
image: app:vl
- name: sidecar
image: sidecar:v0.1.0

containers:
- name: app
image: app:vl
args: ["prod"]
- name: sidecar
image: sidecar:v0.1.0

Local Object Last Applied

xxpart of the live object

tolerations: tolerations:

— key : " n _ key : " "
operator: "Exists" operator: "Exists"
effect: "NoSchedule" effect: "NoSchedule"

Expected actions:

e Add

"baZ"

e Delete "foo"

e Igno

re/preserve "bar"

Live Object

tolerations:

— key: " n
operator: "Exists"
effect: "NoSchedule"

- key: "]
operator: "Exists"
effect: "NoSchedule"

tolerations:
— key: 1" n
operator: "Exists"
effect: "NoSchedule"
— key: 1" n
operator: "Exists"
effect: "NoSchedule"

Local Object

Last Applied

x*xpart of the live object

Live Object

tolerations: tolerations: tolerations:
— key: "baZ" — key: ll-f'ooll — key: Hfooﬂ
operator: "Exists" operator: "Exists" operator: "Exists"
effect: "NoSchedule" effect: "NoSchedule" effect: "NoSchedule"
- key: "bar"
operator: "Exists"
effect: "NoSchedule"
S kubectl apply --filename app.yaml
tolerations: tolerations: tolerations:
- key: "baz" - key: "baz" - key: "baz"
operator: "Exists" operator: "Exists" operator: "Exists"
effect: "NoSchedule" effect: "NoSchedule" effect: "NoSchedule"

Merge Calculations - Lists

e Expected to see list of tolerations merged, but instead
they were replaced.

e Why did this happen?

A (very) brief patch explainer
Strategies:

e JSON Merge Patch

o https://tools.ietf.org/html/rfc7386
e Strategic Merge patch

o Custom to Kubernetes

Strategic Merge Patch

With a Strategic Merge Patch, you can:

e Treat a list much like a map, and merge elements of the list based
on predefined patchMergeKey.

e Individual elements are then added/updated/removed

Strategic Merge - patchMergeKey

e Defined on a per-field basis
e Existsinthe Kubernetes source code

Lookup directly:
https://github.com/kubernetes/api/blob/master/core/vl/types.g

Or via api-reference
https://kubernetes.io/docs/api-reference/v1.8

Strategic Merge - patchMergeKey

type PodSpec struct {
// +patchMergeKey=name
// tpatchStrategy=merge
Containers []Container "patchStrategy:"merge" patchMergeKey:'"name"’

// toptional
Tolerations []Toleration

// toptional

// t+patchMergeKey=name

// tpatchStrategy=merge

Volumes []Volume "patchStrategy:'"merge" patchMergeKey:"name'""

But wait! There's More!

Merge Calculations - Defaulted Fields

"Defaulted" fields may be added to the object.
On a deployment object, for example:
e Replicas defaultsto: 1

e Update strategy defaults to: RollingUpdate

In some cases, updating a defaulted field can be problematic.

Local Object

Last-Applied

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
...

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
...

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
replicas: 1
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge : 1
maxUnavailable: 1
template:
#

Local Object

Last-Applied

Live Object

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
strategy:
type: Recreate
template:
...

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
...

apiVersion: apps/vlbetal
kind: Deployment

metadata:
name: my-app

spec:
replicas: 1
strategy:

type: RollingUpdate

template:

spec.strategy.type '"recreate" incompatible

spec.strategy.rollingUpdate

with

More "gotchas"

We now have a pretty good understanding of apply behavior.

However, there are considerations when using kubectl apply
with other object management techniques.

userl@foo:~ $ cat my-app.yaml

apiVersion: apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
template:
metadata:
labels:
app. my-app
spec:
containers:
- name: my-app
image: myapp:v0.1.0

% Note that “replicas’
:1s not present

User 1 creates initial "my-app" deployment:

userl@foo:~ $ kubectl apply -f my-app.yaml
Deployment "my-app" created

Over time the app 1is scaled up:
userl@foo:~ $ kubectl scale deployment my-app --replicas=3
Later, user 1 bumps the application version:

userl@foo:~ $ sed -i 's/v0.1.0/v0.2.0' my-app.yaml
userl@foo:~ $ kubectl apply -f my-app.yaml

User 2 1is adding a volume, but doesn't have local copy of app

user2@bar:~ $ kubectl get deployment/my-app \
-0 yaml > app-copy.yaml

user2@bar:~ $ vim app-copy.yaml
oL,
metadata:
name: my-app
spec:
replicas: 3
template:
spec: #
volumes:
- name: data
hostPath:
path: /data

User 2 thinks "Aaron said to use "apply’, so.."
user2@bar:~ $ kubectl apply -f app-copy.yaml
deployment "my-app" configured

Later, user 1 wants to bump app version again
userl@foo:~ $ sed -i 's/v0.2.0/v0.3.0/' my-app.yaml

userl@foo:~ $ git commit -am 'Bump v0.3.0'
userl@foo:~ $ kubectl apply -f my-app.yaml

User 1 inadvertently reset replicas and removed volume!

Local Object

apiVersion:
apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
containers:

[...]

Last-Applied

apiVersion:
apps/vlbetal
kind: Deployment
metadata:
name: my-app
spec:
replicas: 3
containers:
[...]
volumes:
- name: data

Live Object

apiVersion:
apps/vlbetal
kind: Deployment
metadata:

name: my-app
spec:

containers:

[...]

e User 2 inadvertantly added fields to "last-applied". Changes

user 1's actions into "deletion" events.

What happened?

User 1's workflow did not change:
1) Modify source config
2) Use kubectl apply

But, user 2's edit changed behavior of user 1's workflow.
e Wanted: updated image field (v0.3.0)
o Got:

o replicasresettol,

o new volume removed (and other fields too)

Aaron's brief list of
recommendations

e Don't define replicasin the local object configuration file
o And/or other fields that might be "externally managed"
e Explicitly define defaulted fields (e.g. update strategy)
o If you need to change in the future, they are "managed"
e Use apply consistently (from same source config object)
o Mixing imperative commands (create/edit/set) can lead
to unintended outcomes (unless you're sure of what
you're doing)

Things we didn't get to cover

e kubectl apply --prune” & declarative object deletion

e Field conflicts when using ~ kubectl apply --overwrite=false"

e Interacting with last-applied-configuration annotation with
o kubectl apply {view,set,edit}-last-applied”

e kubectl patch” command

Homework...

Object management documentation
o https://goo.gl/GcUgHv

Using kubectl patch
e https://goo.gl/Kyb6RX

Apply "v2" refactor proposal
e https://goo.gl/MRUCX6

Declarative Application Management
o https://goo.gl/Te6ZcD

Issues related to declarative application management
o https://goo.gl/UGHLIJk

Thank You!

Questions?

aaron.levy@coreos.com
github/slack: @aaronlevy

