
Oregon Trail to Kubernetes

“The Oregon Trail Deluxe”(1992) by MECC

Contents
1. whoami
2. Lytics Trailhead
3. Loading the Wagon
4. Compute Resource Massacre
5. On the trail
6. Go Kubernetes!
7. Rigging a CLI
8. Deprecation Dysentery
9. Blizzards of Kubernetes

10. Handyman’s Corner
11. Interactive Operators
12. client-go Wrap Up
13. E2E Testing Demo
14. The Homestead
15. Next: Sim City

whoami
● @joshroppo github.com/ropes
● Data, Platform, and Infrastructure Engineering

○ Cloudy, DevO[o]ps, SRE
● Gopher and Kubernetes User

○ Former Pythonista
● Asking why and thoughtful design
● Dislike 3am pages (firefighting)
● Like stable infrastructure platforms

○ Really dislike reading shiny-new-thing
documentation at 3am

● AFK: Mountain biking, Skiing, Climbing Mountains

The Trailhead
● Customer Data Platform

○ Realtime Web Personalization
○ Web APIs Daily Peak around 3k request/s
○ “Big Data” scale: Petabytes
○ Punching above our weight, finite resources

● Standardized on Go since 0.9
○ Supported by R and Python

● AWS -> Google Cloud Platform[GCE]
○ Performance, consistency, clean tooling for compute commodities.
○ GCP Services: Storage, Pubsub, Bigtable, Bigquery

● “Microservice” when necessary..
○ Three Primary Service Tiers(Miniliths)

■ APIs
■ Workflow Management(Batch Jobs)
■ Event Stream Identity Resolution Processing/ML Classifications

Lytics Trailhead
● Saltstack CM

○ Jinja Templatable YAML -> Python -> Bash
○ Powerful and terrifying

● Why Kubernetes?
○ ...this is Kubecon
○ VM management is heavy

■ Building: Packer, OSes, Kernels, Upgrades…
single (static)Binary?

■ How big is thy Ops Team?
○ Glad to be on Google Cloud Platform.

■ GKE == Easy Mode!

Loading the Wagon
Goals

● Lytics Applications managed by Kubernetes
○ Everything in Kubernetes(eventually)

● Sustainable Management(ALAP)
○ Roadmap for growing Kubernetes

object declarations
■ 1..N ResourceGroups(Deployments)

○ Avoid mountains of static YAML

Loading the Wagon
● Kubernetes Application Prep(Read the

Borg Paper)
○ “Container Native” refactor
○ Services/Pods rebalance

gracefully
○ No persistent local storage use.

■ GCS, Ceph, NAS, etc
○ HTTP PreStop hook

■ Annoying batch workflows
that shouldn’t be killed..

● Application Prep Delayed Kubernetes
Deployment

https://research.google.com/pubs/pub43438.html
https://research.google.com/pubs/pub43438.html

Compute Resource Massacre

● Heterogeneous Workloads are
difficult to bin pack.

● Flat vs Complex workflow
schedulers.

● CM Managed VM bin packing →

Compute Resource Massacre

● Container Requests and Limits
○ Allow potential over consumption
○ Scheduler handles Bin Packing
○ “gcloud beta container clusters resize…”

On the Trail
YAML (“It’s better than XML”--devopsdays)

● All the tutorials use(d) YAML
● “kubectl apply -f ./tutorial”

○ ^ wat
● Rules and Static Resources: Great!

○ Services, RBAC, Network Policies
● Saltstack Jinja templating in YAML files PTSD

○ Helm; the Kubernetes CM?
■ Smaller scope than Saltstack

● Simpler Templating
● Validation more than passing isValidYaml()?

■ Helm seemed more focused on accessibility rather than determinism
■ Good Design, uncertain on execution

● New tools since we started: Ksonnet, Kompose

Go Kubernetes!
client-go

● https://github.com/kubernetes/client-go

● Kubecon[client-go The Good, The Bad, The Ugly]: @LiliCosic
https://www.slideshare.net/LiliCosic/clientgo-the-good-the-ba
d-and-the-ugly

● Why: Initially a test, but provides useful sanity checks
○ Compiling against Kubernetes Source*
○ Static API when Documentation was sporadic
○ CoreOS etcd/Prometheus/(Now Vault!) Operators

● Composibile Data Structures
○ Unit testable; Before sending to Kubernetes

The GoShip logo is an adaptation of
the Go gopher created by Renee
French under the Creative Commons
Attribution 3.0 license.

*: At some revision...

https://github.com/kubernetes/client-go
https://twitter.com/LiliCosic
https://www.slideshare.net/LiliCosic/clientgo-the-good-the-bad-and-the-ugly
https://www.slideshare.net/LiliCosic/clientgo-the-good-the-bad-and-the-ugly
http://blog.golang.org/gopher
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

Go Kubernetes!
● Data structure type and

Documentation traversal in
editors.

● Trivial to return to YAML.

● VS Code Demo!

Rigging a CLI
● CLI Tool to create Kubernetes Resources from Go

○ Deployments, DaemonSets, Specific Helper Functions
○ Examples:

■ rigging deployment metaforarunner create --image=gcr.io/… --kubecontext={...}
■ rigging deploymentset linkgrid create --image=gcr.io/… --kubecontext={...}

● kubectl still used :(
○ rigging has limited scope

● Flags can mutate default runtime values
○ Eg: rigging deployment metaforarunner update --cpu=12 --kubecontext={...} (default 8 cpus)

● Hindsight Tips
○ Require Kubeconfig Context selection flag.
○ SemVer binary check before run

Deprecation Dysentery
● Keeping up to date on Kubernetes is hard

○ Project Velocity
○ SIGs, designs to stay aware of. Will a foundation be

deprecated in two release cycles?
○ (ReplicationControllers, ThirdPartyResources,

PetSets)
○ Not the only one(Tiller & Prom-Operator TPR)

● Documentation was unversioned for a long time

...http://mentalfloss.com/article/28968/where-are-they-now-diseases-kille
d-you-oregon-trail

Blizzards of Kubernetes
● Surviving the changeset storm
● Client-go codebase matches

Kubernetes
○ Brace for changes

● Version Matrix & Compatibility Charts
○ Import path and types were

moved(gist)
● Significant improvements made!

https://gist.github.com/Ropes/4aa0ce4e65bd817fcdadda9693838432

Blizzards of Kubernetes
Tips

○ Spend time on design.
○ Vendor vendor vendor! Carefully

■ “dep” works*
○ Never mix with other Go projects that use Google

Libs and particularly GRPC!
○ (Kubernetes Project Velocity cannot be matched)

* careful with RBAC v5.0

https://github.com/kubernetes/client-go/blob/master/INSTALL.md#dependency-management-for-the-serious-or-reluctant-user

Handyman’s Corner

Logging
● Logspout

● DaemonSet fork based on github.com/gliderlabs/logspout
● Read Docker logs; POST to Elasticsearch Cluster(ELK)
● 6 months uptime; Multiple K8s Release Upgrades, No changes needed

● Event-logger
○ Collect Kubernetes Events and emit to logging
○ Alert from failure events

● Modified logrus and shimmed for GCP JSON Severity Log Formating

https://github.com/gliderlabs/logspout

Handyman’s Corner

Metrics
● github.com/ropes/Stonecutters

○ Distributed(etcd) UID → Metric alias reuse
○ deploymentpod-87c6bc2f-gssr → deploymentpod-1...N

■ ...Use Prometheus

https://github.com/ropes/stonecutters

Interactive Operators
Seth
● Not end goal → Operator
● Provides visibility
● Slack is the communication

channel
● Executes commands

interactively
● Reports status/results
● Similar to Helm’s Tiller

○ Less sophisticated

Interactive Operators
Poka Yoke

○ Guardrails to limit accidents
○ Validation possibilities

● Staging manager
○ Enables rapid staging deployments

● Hindsight Tips
○ Wrap communication interface(slack…)
○ Write a lexer: Lexical Scanning in Go -- Rob Pike

● E2E Testing DEMO!

https://en.wikipedia.org/wiki/Poka-yoke
https://www.youtube.com/watch?v=HxaD_trXwRE

Client-go Wrap Up

● Ikea Syndrome? Possibly...
● The client-go path is a lot less bumpy now.

○ Encourage others to explore more.
● GKE is rock solid.(So far)

The Homestead
● Like most risky actions, didn’t go

completely to plan, but we made it!
● Clean and scalable resource

management delivers.
● Compute scheduling overlap saves cost.
● Tooling only has to interact with one

Compute Resource management API.
● Deployments Objects reduce time and

concern.

Next: Sim City

Kubernetes is now {N}% more boring!

Service Meshes! Built in Encryption!
(Thanks Istio, Tigera)

Autoscaling & Resizing: $--

Thank You!

freenode: ropes

github.com/ropes

@joshroppo

“I’m pulling for
you, we’re all in
this together!”

Credits
“The Oregon Trail Deluxe” 1992 created by MECC

● Playable at
https://archive.org/details/msdos_Oregon_Trail_Deluxe_The_1992

● Read the Borg Paper
● Gist to on Upgrading client-go (your mileage may very)
● client-go example project: github.com/ropes/k8s-trailhead

https://archive.org/details/msdos_Oregon_Trail_Deluxe_The_1992
https://research.google.com/pubs/pub43438.html
https://gist.github.com/Ropes/4aa0ce4e65bd817fcdadda9693838432
https://github.com/Ropes/k8s-trailhead

