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whoami
● @joshroppo   github.com/ropes
● Data, Platform, and Infrastructure Engineering

○ Cloudy, DevO[o]ps, SRE
● Gopher and Kubernetes User

○ Former Pythonista 
● Asking why and thoughtful design
● Dislike 3am pages (firefighting)
● Like stable infrastructure platforms

○ Really dislike reading shiny-new-thing 
documentation at 3am

● AFK: Mountain biking, Skiing, Climbing Mountains



The       Trailhead
● Customer Data Platform

○ Realtime Web Personalization
○ Web APIs Daily Peak around 3k request/s 
○ “Big Data” scale: Petabytes
○ Punching above our weight, finite resources

● Standardized on Go since 0.9
○ Supported by R and Python

● AWS -> Google Cloud Platform[GCE]
○ Performance, consistency, clean tooling for compute commodities. 
○ GCP Services: Storage, Pubsub, Bigtable, Bigquery 

● “Microservice” when necessary..
○ Three Primary Service Tiers(Miniliths)

■ APIs
■ Workflow Management(Batch Jobs)
■ Event Stream Identity Resolution Processing/ML Classifications



Lytics Trailhead
● Saltstack CM

○ Jinja Templatable YAML -> Python -> Bash
○ Powerful and terrifying

● Why Kubernetes?
○ ...this is Kubecon
○ VM management is heavy

■ Building: Packer, OSes, Kernels, Upgrades… 
single (static)Binary? 

■ How big is thy Ops Team?
○ Glad to be on Google Cloud Platform.

■ GKE == Easy Mode!



Loading the Wagon
Goals

● Lytics Applications managed by Kubernetes
○ Everything in Kubernetes(eventually)

● Sustainable Management(ALAP) 
○ Roadmap for growing Kubernetes 

object declarations
■ 1..N ResourceGroups(Deployments)

○ Avoid mountains of static YAML



Loading the Wagon
● Kubernetes Application Prep(Read the 

Borg Paper)
○ “Container Native” refactor
○ Services/Pods rebalance 

gracefully
○ No persistent local storage use.

■ GCS, Ceph, NAS, etc
○ HTTP PreStop hook 

■ Annoying batch workflows 
that shouldn’t be killed..

● Application Prep Delayed Kubernetes 
Deployment

https://research.google.com/pubs/pub43438.html
https://research.google.com/pubs/pub43438.html


Compute Resource Massacre

● Heterogeneous Workloads are 
difficult to bin pack.

● Flat  vs Complex workflow 
schedulers.

● CM Managed VM bin packing   →



Compute Resource Massacre

● Container Requests and Limits
○ Allow potential over consumption
○ Scheduler handles Bin Packing
○ “gcloud beta container clusters resize…”



On the Trail
YAML (“It’s better than XML”--devopsdays)

● All the tutorials use(d) YAML
● “kubectl apply -f ./tutorial”

○ ^ wat 
● Rules and Static Resources: Great!

○ Services, RBAC, Network Policies 
● Saltstack Jinja templating in YAML files PTSD

○ Helm; the Kubernetes CM? 
■ Smaller scope than Saltstack

● Simpler Templating
● Validation more than passing isValidYaml()?

■ Helm seemed more focused on accessibility rather than determinism
■ Good Design, uncertain on execution

● New tools since we started: Ksonnet, Kompose



Go Kubernetes!
client-go

● https://github.com/kubernetes/client-go

● Kubecon[client-go The Good, The Bad, The Ugly]: @LiliCosic 
https://www.slideshare.net/LiliCosic/clientgo-the-good-the-ba
d-and-the-ugly

● Why: Initially a test, but provides useful sanity checks
○ Compiling against Kubernetes Source*
○ Static API when Documentation was sporadic
○ CoreOS etcd/Prometheus/(Now Vault!) Operators

● Composibile Data Structures 
○ Unit testable; Before sending to Kubernetes

The GoShip logo is an adaptation of 
the Go gopher created by Renee 
French under the Creative Commons 
Attribution 3.0 license.

*: At some revision...

https://github.com/kubernetes/client-go
https://twitter.com/LiliCosic
https://www.slideshare.net/LiliCosic/clientgo-the-good-the-bad-and-the-ugly
https://www.slideshare.net/LiliCosic/clientgo-the-good-the-bad-and-the-ugly
http://blog.golang.org/gopher
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/


Go Kubernetes!
● Data structure type and 

Documentation traversal in 
editors. 

● Trivial to return to YAML.

● VS Code Demo!



Rigging a CLI
● CLI Tool to create Kubernetes Resources from Go

○ Deployments, DaemonSets, Specific Helper Functions
○ Examples: 

■ rigging deployment metaforarunner create --image=gcr.io/… --kubecontext={...}
■ rigging deploymentset linkgrid create --image=gcr.io/… --kubecontext={...}

● kubectl still used :(
○ rigging has limited scope

● Flags can mutate default runtime values
○ Eg: rigging deployment metaforarunner update --cpu=12 --kubecontext={...} (default 8 cpus)

● Hindsight Tips
○ Require Kubeconfig Context selection flag.
○ SemVer binary check before run



Deprecation Dysentery
● Keeping up to date on Kubernetes is hard

○ Project Velocity 
○ SIGs, designs to stay aware of. Will a foundation be 

deprecated in two release cycles?
○ (ReplicationControllers, ThirdPartyResources, 

PetSets)
○ Not the only one(Tiller & Prom-Operator TPR)

● Documentation was unversioned for a long time

...http://mentalfloss.com/article/28968/where-are-they-now-diseases-kille
d-you-oregon-trail



Blizzards of Kubernetes
● Surviving the changeset storm
● Client-go codebase matches 

Kubernetes
○ Brace for changes

● Version Matrix & Compatibility Charts
○ Import path and types were 

moved(gist)
● Significant improvements made!

https://gist.github.com/Ropes/4aa0ce4e65bd817fcdadda9693838432


Blizzards of Kubernetes
Tips

○ Spend time on design. 
○ Vendor vendor vendor! Carefully

■ “dep” works*
○ Never mix with other Go projects that use Google 

Libs and particularly GRPC!
○ (Kubernetes Project Velocity cannot be matched)

* careful with RBAC v5.0

https://github.com/kubernetes/client-go/blob/master/INSTALL.md#dependency-management-for-the-serious-or-reluctant-user


Handyman’s Corner

Logging
● Logspout

● DaemonSet fork based on github.com/gliderlabs/logspout 
● Read Docker logs; POST to Elasticsearch Cluster(ELK)
● 6 months uptime; Multiple K8s Release Upgrades, No changes needed

●  Event-logger
○ Collect Kubernetes Events and emit to logging
○ Alert from failure events 

● Modified logrus and shimmed for GCP JSON Severity Log Formating 

https://github.com/gliderlabs/logspout


Handyman’s Corner

Metrics
● github.com/ropes/Stonecutters 

○ Distributed(etcd) UID → Metric alias reuse
○ deploymentpod-87c6bc2f-gssr → deploymentpod-1...N

■ ...Use Prometheus

https://github.com/ropes/stonecutters


Interactive Operators
Seth
● Not end goal → Operator
● Provides visibility
● Slack is the communication 

channel
● Executes commands 

interactively 
● Reports status/results
● Similar to Helm’s Tiller

○ Less sophisticated



Interactive Operators
Poka Yoke

○ Guardrails to limit accidents
○ Validation possibilities 

● Staging manager
○ Enables rapid staging deployments

● Hindsight Tips
○ Wrap communication interface(slack…)
○ Write a lexer: Lexical Scanning in Go -- Rob Pike 

● E2E Testing DEMO!

https://en.wikipedia.org/wiki/Poka-yoke
https://www.youtube.com/watch?v=HxaD_trXwRE


Client-go Wrap Up

● Ikea Syndrome? Possibly...
● The client-go path is a lot less bumpy now.

○ Encourage others to explore more.
● GKE is rock solid.(So far)



The Homestead
● Like most risky actions, didn’t go 

completely to plan, but we made it!
● Clean and scalable resource 

management delivers.
● Compute scheduling overlap saves cost.
● Tooling only has to interact with one 

Compute Resource management API.
● Deployments Objects reduce time and 

concern.



Next: Sim City

Kubernetes is now {N}% more boring!

Service Meshes! Built in Encryption! 
(Thanks Istio, Tigera)

Autoscaling & Resizing: $--



Thank You!

freenode: ropes

github.com/ropes

@joshroppo 

“I’m pulling for 
you, we’re all in 
this together!”



Credits
“The Oregon Trail Deluxe” 1992 created by MECC

● Playable at 
https://archive.org/details/msdos_Oregon_Trail_Deluxe_The_1992  

● Read the Borg Paper
● Gist to on Upgrading client-go (your mileage may very)
● client-go example project: github.com/ropes/k8s-trailhead

https://archive.org/details/msdos_Oregon_Trail_Deluxe_The_1992
https://research.google.com/pubs/pub43438.html
https://gist.github.com/Ropes/4aa0ce4e65bd817fcdadda9693838432
https://github.com/Ropes/k8s-trailhead

