
The mechanics of deploying Envoy at Lyft

Matt Klein / @mattklein123, Software Engineer @Lyft

What is Envoy and the service mesh?

The network should be transparent to applications. When
network and application problems do occur it should be easy to
determine the source of the problem.

Service mesh refresher

Envoy refresher

● Out of process architecture
● Modern C++11 code base
● L3/L4 filter architecture
● HTTP L7 filter architecture
● HTTP/2 first
● Service discovery and active/passive health checking
● Advanced load balancing
● Best in class observability (stats, logging, and tracing)
● Edge proxy

Lyft ~4 years ago

PHP / Apache
monolith

MongoDB

InternetClients AWS ELB

Simple! No SoA! (but still not that simple)

Lyft today

Legacy monolith
(+Envoy) MongoDB

Internet

Clients

“Front” Envoy
(via TCP ELB) DynamoDB

Python services
(+Envoy)

Service-mesh! Awesome! No fear SoA!

Go services
(+Envoy)

Stats / tracing
(direct from

Envoy)

Discovery

How did Lyft go from then to now

● Can’t go from before to after overnight.
● Must be incremental. Show value in steps.
● Perfect is the enemy of the good.
● This is how we did it…(teaser: it wasn’t easy)

cluster.account.upstream_cx_active: 18
cluster.account.upstream_cx_close_notify: 725
cluster.account.upstream_cx_connect_fail: 0
cluster.account.upstream_cx_connect_timeout: 0
cluster.account.upstream_cx_destroy: 0
cluster.account.upstream_cx_destroy_local: 0
cluster.account.upstream_cx_destroy_local_with_active_rq: 0
cluster.account.upstream_cx_destroy_remote: 0
cluster.account.upstream_cx_destroy_remote_with_active_rq: 0
cluster.account.upstream_cx_destroy_with_active_rq: 0
cluster.account.upstream_cx_http1_total: 0
cluster.account.upstream_cx_http2_total: 801
cluster.account.upstream_cx_max_requests: 0
cluster.account.upstream_cx_none_healthy: 0
cluster.account.upstream_cx_overflow: 0
cluster.account.upstream_cx_protocol_error: 0
cluster.account.upstream_cx_rx_bytes_buffered: 9092
cluster.account.upstream_cx_rx_bytes_total: 1224096757

Start with edge proxy

● Microservice web apps need edge reverse proxy.
● Existing cloud offerings are not so good (even still).
● Easy to show value very quickly with stats, enhanced load balancing and

routing, and protocols (h2/TLS).

AWS TCP ELB Edge Envoy

Service foo

Service bar

Service baz

/bar

/baz

/foo

Start with edge proxy

Observability, observability, observability...

Next: TCP proxy and Mongo

PHP/Python/Go
service

Envoy
Filter chain MongoSMongoSMongoS

MongoSMongoSMongoD

Cool stats

● PHP to sharded Mongo not efficient with connection counts.
● Mongo bad at connection handling.
● Limit connections into Mongo.
● ... We can parse Mongo at L7 and generate cool stats!
● ... We can ratelimit Mongo to avoid death spirals!
● ... We can do this for all services, not just Python!

Global rate limit
service

Next: service sidecar

● Because of Mongo, Envoy already running on services.
● Let’s use for ingress buffering, circuit breaking, and observability.
● Still using internal ELBs at this point for service to service traffic.
● Still get tons of value out of above without direct mesh connect.

AWS TCP ELB Edge Envoy AWS Internal
ELB Mesh Envoy Service

Next: service discovery and real mesh

● ELBs are (and intermediate LBs in general) … not great. Let’s do direct
connect.

● Need service discovery.
● No ZK, etcd, or Consul. Eventually consistent. Build dead simple system with

dead simple API.

Discovery
Service Cron Job

Mesh Envoy

Service

Cron Job

Edge Envoy

Envoy thin clients @Lyft

from lyft.api_client import EnvoyClient

switchboard_client = EnvoyClient(

 service='switchboard'

)

msg = {'template': 'breaksignout'}

headers = {'x-lyft-user-id': 12345647363394}

switchboard_client.post("/v2/messages", data=msg, headers=headers)

● Abstract away egress port
● Request ID/tracing propagation
● Guide devs into good timeout, retry, etc. policies
● Similar thin clients for Go and PHP

Next … Envoy everywhere

● OK this Envoy thing is pretty neat.
● Need to run it everywhere for full value.
● And so begins the slog. Many month burndown to convert everything and

remove ELBs.
● Why a slog? Because of how Lyft manages services and configurations…
● But after slog complete, payoff is

tremendous. Keep adding features
that developers want and deploy
them widely very quickly...

Initial Envoy config management

● Envoy config is JSON/YAML.
● Initially we had full JSON committed.
● Deploys compile Envoy and bundle configs. Don’t need to do back compat.
● Config per deployment type.

○ front_envoy.json
○ service_to_service_envoy.json

● Envoy deployed via “pull deploy” and salt on each host.
● 1 service per host, 1 envoy per service, 1 envoy per host.
● Hot restart used for both config/binary deploys (no difference).

{
 “listeners”: {...},
 “clusters”: {...},
 ...
}

Next comes configgen.py and … jinja!

● These configs are starting to get really tedious to write!
● Would like some amount of static scripting.
● Develop a tool called configgen.py which takes in a bunch of templates and

inputs, runs jinja on them, and produces final outputs.
● Already starting to see trend that ultimately no way around complex Envoy

configs being machine generated.
{% import 'certs.json' as certs -%}
{% macro listener(port,ssl,proxy_proto) %}
 {
 "address": "tcp://0.0.0.0:{{ port }}",
 {% if ssl -%}
 "ssl_context": {
 "alpn_protocols": "h2,http/1.1",
 {{ certs.public(service_instance) }}
 },
 {% endif -%}

Envoy config/process management @Lyft with templating

Jinja JSON
templates

“Front” Envoy
build/deploy

Binaries/configs

Service
manifests

Service/Envoy
deploy

StS Envoy
configs

Salt/runit

● Combination of static and dynamic
configs.

● Service egress, circuit breaking, etc.
configs specified in manifest.

● Service configs built on service host at
service/envoy deploy time.

Envoy control plane APIs

● The goal of Envoy has always been as a universal data plane.
● Support APIs to enable control plane integration.
● V1 JSON/REST APIs (order of implementation):

○ Service Discovery Service (SDS) (note: poorly named)
○ Cluster Discovery Service (CDS)
○ Route Discovery Service (RDS)
○ Listener Discovery Service (LDS)

● @Lyft we only currently use SDS. Everything else driven by Jinja/JSON
templating.

Lyft Envoy config management now

Cluster manager

Listener
manager

Route manager

Legacy
discovery
service

Envoy manager
service

Envoy static
config repo

Service
manifests

S3

Registration cron
jobs

SDS

CDS

RDS

LDS

Only need a very tiny bootstrap config for each envoy...

Q&A

● Thanks for coming! Questions welcome on Twitter: @mattklein123
● We are super excited about building a community around Envoy. Talk to us if

you need help getting started.
● https://www.envoyproxy.io/
● Lyft is hiring!

