
Migrating Hundreds
of Legacy
Applications to
Josef Adersberger, CTO, QAware 
@adersberger 

}THE GOOD,
THE BAD,
THE UGLY

proud CNCF member

HYPERSCALE
RESILIENT

OPEX SAVINGS
SPEED

CIOLet’s bring  
all our web  
applications 
into the cloud!

I’ve already  
canceled our  
current data center  
contract.

Chief Architect

 Great goal!

But we’ll need  
our time.

Excellent!

You’ve got one year.

CIOMy priorities:

(1) Security level

(2) Time

(3) OpEx savings

(4) Migration costs

8

WE WERE BRAVE

AND WE HAD … IMPEDIMENTS

THE GOOD

11

Visibility

Let’s architect
the cloud!

PACKAGED AND
DISTRIBUTED AS CONTAINERS

BUILD AND COMPOSED
AS MICROSERVICES

DYNAMICALLY
EXECUTED IN THE CLOUD

CLOUD NATIVE APPLICATIONS

3
KE

Y
PR

IN
CI

PL
ES

OMG - no greenfield  
approach!?

Hundreds of legacy
systems!?

Questionnaire: Typical Questions And Their Motivation

1. Technology stack (e.g. OS, appserver, jvm)
2. Required resources (memory, CPU cores)
3. Writes to storage (local/remote storage,

write mode, data volume)
4. Special requirements (native libs, special

hardware)
5. Inbound and outbound protocols (protocol

stack, TLS, multicast, dynamic ports)
6. Ability to execute (regression/load tests,

business owner, dev knowhow, release cycle,
end of life)

7. Client authentication (e.g. SSO, login,
certificates)

What images to provide?
How many applications will be hard/
inefficient to schedule (>3 GB RAM, > 2
cores)?
What storage solutions to provide?
What applications will be hard to
impossible to be containerized?
Are there any non cloud-friendly
protocols?
How risky is the migration? Is the
migration maybe not needed?
What IAM and security mechanisms have
to be ported to the cloud?

16

QAVALIDATOR
SONARQUBE

EAM TOOL

QUESTIONNNAIRES

JIRA

XLS

STATIC ANALYSIS
IBM MIGRATION TOOL

…

MIGRATION TASKS

BASIC
TOUR-DE-MIGRATION

SYSTEM PROPERTIES

dashboard for information radiator

freestyle analysis with Tableau

MIGRATION DATABASE

CL
OU

DA
LYZ

ER

17

Emergent design
of software landscapes

OLD APPLICATIONS (~200) MORE MODERN APPLICATIONS (~200)

ALL WEB APPLICATIONS (~400)

Re-architect to run on k8s on AWS lift & shift VMs to AWS EC2

APPLICATION

HTTPD WEB LAYER

ALMIGHTY LEGACY FRAMEWORK

J2EE 1.4 APPSERVER

JVM 1.6

DB MQ HOST BATCH FS

CLIENTS

TLS 1.0+

mostly non-TLS; 
TCP-Binary, WS, REST, C:D, LDAP 
Corba, SMTP, FTP, NAS, …

RACF ESB

ONPREM DATA CENTER
ONPREM DATA CENTER

DB MQ HOST BATCH FS RACF ESB

KUBERNETES / OPENSHIFT (CAAS)
DOCKER

JVM 8

ALMIGHTY FRAMEWORK NG
INNER APPLICATIONS

AWS WEB LAYER

AWS

CLIENTS

TLS 1.2

all TLS 1.2

JEE 7 APPSERVER

API GATEWAY
OUTER APPLICATIONS all 2-way

TLS 1.2 
& OIDC 
identity
token

APPLICATION

HTTPD WEB LAYER

ALMIGHTY LEGACY FRAMEWORK

J2EE 1.4 APPSERVER

JVM 1.6

DB MQ HOST BATCH FS

CLIENTS

TLS 1.0+

mostly non-TLS; 
TCP-Binary, WS, REST, C:D, LDAP 
Corba, SMTP, FTP, NAS, …

RACF ESB

ONPREM DATA CENTER
ONPREM DATA CENTER

DB MQ HOST BATCH FS RACF ESB

KUBERNETES / OPENSHIFT (CAAS)
DOCKER

JVM 8

ALMIGHTY FRAMEWORK NG
INNER APPLICATIONS

AWS WEB LAYER

AWS

CLIENTS

TLS 1.2

all TLS 1.2

JEE 7 APPSERVER

API GATEWAY
OUTER APPLICATIONS all 2-way

TLS 1.2 
& OIDC 
identity
token

2

Can we evolve existing enterprise applications into the
cloud with reasonable effort?

Containerization

12-Factor App Principles

Microservices

Cloud-native Apps

Monolithic Deployment

Traditional Infrastructure

CLOUD FRIENDLY CLOUD NATIVECLOUD ALIEN

2

Can we evolve existing enterprise applications into the
cloud with reasonable effort?

Containerization

12-Factor App Principles

Microservices

Cloud-native Apps

Monolithic Deployment

Traditional Infrastructure

Sweetspot 
time and value (security, opex)

Put the monolith
into a container

… and enhance the 
application according
the 12 factors

CLOUD FRIENDLY

Edge Service to the Rescue

MONOLITH
MONOLITH

EDGE SERVICE

BACKEND

CLIENTS

API GATEWAY

BACKEND

CLIENTS

BEFORE AFTER

MONOLITH

EDGE SERVICE

CLIENTS

TOKEN PROVIDER

TLS 1.2 + diverse user contexts (SAML,
Cookie, Header, Certificate, User/Pwd, …)

Change user context to
OIDC identity token

IAM SYSTEMS

API GATEWAY

TLS 1.2 + identity token

TLS 1.2 + identity token

Redirect to (S)SO if user context
not set / valid but required

user context
> 10

Edge Service <<pod>>
Edge Service <<container>>

Edge Service Chassis <<spring boot app>>

Spring Framework

Spring Boot

Netflix Zuul / Spring Cloud Zuul

Edge Service Filters

Redis

Edge Library

Token Service

Token Cache
SPI

Token
SPIToken

APIToken Handling Filter <<pre>>

Static Content Filter <<routing>>

Security Filter <<pre>>
Auth Plugins

Token
Provider

Web Layer

API Gateway

Sidecars to the Rescue

Container Patterns Applied

• Log extraction / re-formatting (fluentd)
• Scheduling (Quartz)

Sidecar: Enhance container behaviour

Ambassador: Proxy communication

Adapter: Provide standardized interface

• Configuration (ConfigMaps & Secrets to files)

• TLS tunnel (Stunnel, ghosttunnel)
• Circuit Breaking (linkerd)
• Request monitoring (linkerd)

Pod

Application Container

Pattern Container

Other Container

“Design patterns for container-based distributed systems”. Brendan Burns, David Oppenheimer. 2016

Kubernets  
Constraints
Initially we thought we’ll
run into k8s restrictions on
our infrastructure like:
‣ No support for multicast
‣ No RWX PVC available

We did. But cutting these  
application requirements
lead to a better
architecture in each
and every case.

THE BAD

STATE

Databases

ONPREM DATA CENTER

AWS

DATABASES

MONOLITH

Databases stay in onprem data center
• Advantages:

• onprem/cloud version of the application can run in parallel
• privacy

• Disadvantages:
• latency (no real problem)

Activate TLS for all database connections  
(low effort on application-side but separate project on the
database side)

Files

File persistence is very restricted to keep persistent state completely out of
AWS (privacy).
‣ No file writes allowed into container
‣ No RWX PVC available
‣ Files with application data written to PVC must be deleted after 15mins
‣ No NAS mounts from onprem data centers into containers allowed

Migration tasks for affected applications
‣ Store files as BLOB in database or use FTPS

Session State
90% OF THE APPLICATIONS HAVE SESSION STATE

100% OF THE APPLICATIONS HAVE MORE THAN 1 INSTANCE

Session Stickyness: not within the cloud!

Session Persistence:
‣ Within existing application database: performance impact too high for most
‣ Redis: no transport encryption out-of-the-box and separate infrastructure required

Session Synchronization:
‣ Application server: nope, no dynamic peer lookup within k8s
‣ In-memory data grid: Hazelcast. Nope. $$$ for TLS.
‣ In-memory data grid: Apache Ignite. Done.
‣ Embedded within application or standalone in a separate container.
‣ Little bit cumbersome but working k8s peer lookup
‣ Runs into JIT bug on IBM JVM (some methods have to be excluded from JIT)

DIAGNOS- 
ABILITY

need a DevOps?

Metrics

Events / LogsTraces

Diagnosability

Metrics

Events / LogsTraces

Diagnosability

Metrics

Events / LogsTraces

• High effort to instrument for
valuable insights

• Scalability unclear for hundreds of
applications

• Applications have no time to run
their own Prometheus instance

• Scalability unclear for hundreds of
applications (Jaeger & ZipKin)

• Applications have no time to run
their own instance

• Scalability unclear (a lot of events lost)
• Applications have no time to run their

own EFK instance
• Non-standardized log format requires

custom log rewrite adapter but no
fluentd DaemonSet

Diagnosability

Metrics

Events / LogsTraces

SECURITY

need a SecDevOps?

We Came Far

BACKEND

MONOLITH

EDGE SERVICE
TLS 1.2 + user context

API GATEWAY

Two-way TLS 1.2 +
identity token

Two-way TLS 1.2 +
identity token

TOKEN CHECK

TLS 1.2 + user context

secrets injected at
container startup

security filters included

CLIENTS

CLIENTCERT ACL

EGRESS RULES

The Bad: Certificate Management
VAR 1: CLOUD NATIVE STYLE CERTIFICATE MANAGEMENT  

(SPIFFE-BASED, AT SERVICE MESH OR APPLICATION LEVEL) VAR 2: REPLACE BY POLICIES (AT NETWORKING LEVEL)

e.g. e.g.

SPIRE

THE UGLY
String hostRequest = new HostRequest().hostusPokus(message);

44

CLOUD ENABLING  
CLOUD ALIENS

TOXIC 
TECH

The Almighty Legacy Framework
• “worry-free package framework” from the early 2000s with about

500kLOC and 0% test coverage
• Migration tasks

• from J2EE 1.4 to JEE 7 and Java 6 to 8
• add identity token check and token relay
• modify session handling (synchronization)
• modify logging (to STDOUT)
• modify configuration (overwrite from ConfigMap)
• enforce TLS 1.2
• place circuit breakers
• predefined liveness and readiness probes

• Strategies:
• the hard way: migrate manually and increase coverage
• decorate with ambassadors, sidekicks and adapters
• do not migrate parts and replace that API within the applications

APPLICATION

ALMIGHTY LEGACY FRAMEWORK

J2EE 1.4 APPSERVER

JVM 1.6

47

~ 100 systems live on target
by end of this year (after 8mo)

~ 200 systems live on target
by end of first quarter 2018

other ~200 systems migrated
by end of first quarter 2018 via
virtual lift & shift. They will be
migrated onto Kubernetes
afterwards

That’s what we’ve learned
from migrating hundreds 
of J2EE legacy apps 
onto Kubernetes? 

No stupid

“as-is into  
containers”

approach!

Getting as close as  
possible to cloud friendly  
 application principles.

 Increasing the security  
 level by an order of  
 magnitude!

Q -> A

proud member of the CNCF

TWITTER.COM/QAWARE - SLIDESHARE.NET/QAWARE

Thank you!

 josef.adersberger@qaware.de
 @adersberger

http://twitter.com/qaware
http://slideshare.net/qaware
mailto:josef.adersberger@qaware.de?subject=

BONUS SLIDES

54

Industrialization

ARCHITECTURE TEAM (~2 FTE)

SUPPORT TEAM (~10 FTE)

DOZENS OF MIGRATION PROJECTS RUNNING IN PARALLEL (UP TO ~80)

‣ Training sessions

‣ Support sessions

‣ Guidance (cookbook, sample application)

‣ Development environment (SEU-as-Code)

‣ Standard images

‣ Automated Refactorings (RefactoBot)

‣ Pre-migrated frameworks

‣ Solutions: Edge service, ambassadors

INDUSTRIALIZATION TEAM (~6 FTE)

‣ Application blueprint (target architecture, migration rules)

‣ Migration database

NO SPEAK  
CLOUD

DMS System

APPLICATION

DMS

Proprietary (binary) 
TCP-level on fixed ports 
Non-encrypted 
Multiple target servers

DMS ADAPTER

Hard-coded DNS
names as reference
to other servers in
response

APPLICATION
DMS ADAPTER

STUNNEL

STUNNEL
DMS

ONPREM

KUBERNETES ON AWS

POD

STUNNEL STUNNEL
PODS

SVC.HOST1 SVC.HOST2 SVC.HOST3

lbl:host1 lbl:host2 lbl:host3

ONPREM

dnshostname1.com.myapp.svc.cluster.local

dnshostname1.com

8PLAN

BUILD

RUN

GRASP

Continuous 
Delivery

Continuous 
Feedback

IDE (ECLIPSE, INTELLIJ)

 ARTIFACTORY

Kubernetes Cluster

RUNNING TESTED APPLICATIONS

INFORMATION RADIATOR

 GITHUB ENTERPRISE

ACCOUNTABILITY PLUGIN

JENKINS

JARs 
Docker image Docker image

deploy

Trigger 
Code

Code Status

