The Elements of Kubernetes

Aaron Schlesinger
Microsoft Azure Containers
Lead, SIG-Service-Catalog

Why we're here

% Kubernetes is growing fast

% Usage, development, projects

% We'rein the wild west

Building an app for Kubernetes

Lots to figure out

No one size fits all

We need a "north star” for people
building cloud-native apps

North Star

% Help app operators/developers decide what to do
% Stand up to rapid technology changes
* Guide SIGs

Best practices, not rules

What we have now

% Opinions

% Evidence

* Fragmentation

I've seen the good & the bad

I'm here to propose ideas

Observability is golden

Observability is golden

Y Kubernetes schedules containers

Y Kubernetes observes containers

% You observe containers

Kubernetes observing your app

% Resource limits
% Readiness & liveness checks
* HPA

You observing your app

Adopt a rich ecosystem of cloud native tools:

* Logging
% Service mesh
% Tracing

When all else falils, crash

Crash-only software

% You'll have bugs, network outages, disk issues, etc...

% Kubernetes is your retry loop

What that might look like

L e g b b b b

Your app connects to a DB on startup

App fails to connect, crashes

Tracing sees the conn. failure

Kubernetes restarts it

Monitoring, log aggregation pick up the restart
Alerting notifies if too many restarts

Unordered is better than
ordered

Unordered is better than ordered

% Kubernetes & your app are distributed systems

% Orderingis very hard in distributed systems

% Trynottorely onordering

But sometimes you need it

Use Kubernetes primitives.

% Sidecar for locks, leader election
% Resource versions in Kubernetes resources
% Init containers (can be messy)

Loose coupling Is better than
tight coupling

Loose coupling is better than tight

% Kubernetes is always watching

% Your app should tolerate dynamism

What that might look like

% Pod =>Pod messaging via Services
% Crash if you can’t connect (crash-only)
% Look for Kube resources via labels, not names

.. But tight coupling isn't
always wrong

Tight coupling isn't always wrong

% Pods have >1 containers on purpose

% Runtightly coupled containersin a pod

What that might look like

* Envoy

* Fluentd logging driver

% Metrics

Record your configuration

Record your configuration

% Kubernetes APIs are declarative

% Keep the latest working configuration in your repository

% Let Kubernetes reconcile

e
e

sl
)

Ippet a Pz
T 127t
i Aigaas
Ve
\2rre
ey

e L
¥ 4212 Jpacd |ajuN LB
7 }‘L’,;,r,.«., Torjach iaery 7 TSy hnease o genen wiscetbs 1RSI

What might that look like

.
HELM

~A

Ask for the least

Ask for the least

If you're:
* Configuring RBAC permissions
% Configuring containersin a pod
% Asking for CPU shares or memory
% Asking for disk space with a PersistentVolumeClaim

Ask for the fewest possible of them. Leave more for Kubernetes

What that might look like

* % Ot

Read-only permissions for your monitoring system
One CPU share for each web frontend

Minimal disk for your log aggregator

Tiny memory for your local proxy

Build on the shoulders of
giants

Build on the shoulders of giants

% Kubernetes provides a big API

o ...toabstract functionality that’s hard to get right
% Maybe the community doesn’t do what you need

o ...buttry to find the next best thing and build atop

What that might look like

Helm for managing your app lifecycle

* Orthe Helm API (which is gRPC)
Traefik for Ingress

% Or Traefik => service mesh => your app
Fluentd for Logging

% Orapp => local translator => fluentd

traefik

fluentd

Parting thoughts: where
should we go from here?

Who should define our guidelines?

% |'ve started the conversation here

% We all have a wealth of experience

* Weneedtoshareit

We need your thoughts

https://github.com/arschles/kube-best-practices

https://github.com/arschles/kube-best-practices

Thank you

aaron.schlesinger@microsoft.com
@arschles
github.com/arschles

mailto:aaron.schlesinger@microsoft.com
https://github.com/arschles

Community Extras

Pay it forward

Pay it forward

% If you “build on the shoulders of giants,” open source it

% You'll be moving cloud native forward

* We'll progress as community & concept because of your work

Disagree constructively

Disagree constructively

% Cloud native is young

% If youdisagree with a choice, others do too

% Make your voice heard, and offer solutions

