
The Elements of Kubernetes

Aaron Schlesinger
Microsoft Azure Containers
Lead, SIG-Service-Catalog

★ Kubernetes is growing fast

★ Usage, development, projects

★ We’re in the wild west

Why we’re here

Building an app for Kubernetes

Dev/Test Containerize CI/CD

Staging Pre-prod Prod

ResilienceMonitoring Tracing Logging Observability

Lots to figure out

No one size fits all

We need a “north star” for people
building cloud-native apps

★ Help app operators/developers decide what to do
★ Stand up to rapid technology changes
★ Guide SIGs

Best practices, not rules

North Star

What we have now

★ Opinions

★ Evidence

★ Fragmentation

I’ve seen the good & the bad

I’m here to propose ideas

Observability is golden

★ Kubernetes schedules containers

★ Kubernetes observes containers

★ You observe containers

Observability is golden

★ Resource limits

★ Readiness & liveness checks

★ HPA

Kubernetes observing your app

You observing your app

Adopt a rich ecosystem of cloud native tools:

★ Logging

★ Service mesh

★ Tracing

When all else fails, crash

Crash-only software

★ You’ll have bugs, network outages, disk issues, etc...

★ Kubernetes is your retry loop

What that might look like

★ Your app connects to a DB on startup

★ App fails to connect, crashes

★ Tracing sees the conn. failure

★ Kubernetes restarts it

★ Monitoring, log aggregation pick up the restart

★ Alerting notifies if too many restarts

★ ...

Unordered is better than
ordered

★ Kubernetes & your app are distributed systems

★ Ordering is very hard in distributed systems

★ Try not to rely on ordering

Unordered is better than ordered

Use Kubernetes primitives.

★ Sidecar for locks, leader election

★ Resource versions in Kubernetes resources

★ Init containers (can be messy)

But sometimes you need it

Loose coupling is better than
tight coupling

Loose coupling is better than tight

★ Kubernetes is always watching

★ Your app should tolerate dynamism

What that might look like

★ Pod => Pod messaging via Services
★ Crash if you can’t connect (crash-only)
★ Look for Kube resources via labels, not names

… But tight coupling isn’t
always wrong

★ Pods have >1 containers on purpose

★ Run tightly coupled containers in a pod

Tight coupling isn’t always wrong

★ Envoy

★ Fluentd logging driver

★ Metrics

What that might look like

Record your configuration

Record your configuration

★ Kubernetes APIs are declarative

★ Keep the latest working configuration in your repository

★ Let Kubernetes reconcile

What might that look like

Ask for the least

Ask for the least

If you’re:

★ Configuring RBAC permissions

★ Configuring containers in a pod

★ Asking for CPU shares or memory

★ Asking for disk space with a PersistentVolumeClaim

Ask for the fewest possible of them. Leave more for Kubernetes

What that might look like

★ Read-only permissions for your monitoring system

★ One CPU share for each web frontend

★ Minimal disk for your log aggregator

★ Tiny memory for your local proxy

Build on the shoulders of
giants

Build on the shoulders of giants

★ Kubernetes provides a big API

○ … to abstract functionality that’s hard to get right
★ Maybe the community doesn’t do what you need

○ … but try to find the next best thing and build atop

What that might look like

Helm for managing your app lifecycle

★ Or the Helm API (which is gRPC)

Traefik for Ingress

★ Or Traefik => service mesh => your app

Fluentd for Logging

★ Or app => local translator => fluentd

Parting thoughts: where
should we go from here?

Who should define our guidelines?

★ I’ve started the conversation here

★ We all have a wealth of experience

★ We need to share it

We need your thoughts

https://github.com/arschles/kube-best-practices

https://github.com/arschles/kube-best-practices

Thank you

aaron.schlesinger@microsoft.com
@arschles
github.com/arschles

mailto:aaron.schlesinger@microsoft.com
https://github.com/arschles

Community Extras

Pay it forward

Pay it forward

★ If you “build on the shoulders of giants,” open source it

★ You’ll be moving cloud native forward

★ We’ll progress as community & concept because of your work

Disagree constructively

★ Cloud native is young

★ If you disagree with a choice, others do too

★ Make your voice heard, and offer solutions

Disagree constructively

