
Gerard Hickey, Principal Systems Engineer, Smartsheet

The	Easy—Don't	Drive	Yourself	Crazy—
Way	to	Kubernetes Networking



Accolades

• Too	many	people	to	thank	directly

• Special	thanks	to	Erik	Stidham @	Tigera for	helping	me	get	the	my	
first	running	network	stack.	



Kubernetes Network	Topology



Useful	Network	Ranges

• Choose	ranges	for	the	Pod	and	Service	CIDR	blocks

• Generally	any	of	the	RFC-1918	 ranges	work	well
• 10.0.0.0/8
• 172.0.0.0/11
• 192.168.0.0/16

• Keep	the	network	range	simple,	don’t	be	creative



Key	Understanding	#1

Every	Pod	can	
communicate	directly	
with	every	other	pod



Kubernetes Node

• A	general	purpose	compute	that	has	at	
least	one	interface

• The	host	OS	will	have	a	real	world	IP	for	
accessing	 the	machine

• Kubernetes Pods	are	given	virtual	interfaces	 	
connected	 to	an	internal	

• Each	node	has	a	running	network	stack	

• Kube-proxy	runs	in	the	OS	to	control	
iptables

• Services
• NodePorts



Networking Substrate

• Most	Kubernetes network	stacks	allocate	subnets	for	each	node
• Network	stack	is	responsible	 for	arbitration	of	subnets	 and	IPs
• Network	stack	is	also	responsible	 for	moving	packets	 around	the	network

• Pods	have	a	unique,	routable	IP		on	the	Pod	CIDR	block
• CIDR	block	is	not accessed	 from	outside	 the	Kubernetes cluster
• Magic	of	IP	Tables	 allows	the	Pods	to	make	outgoing	connections

• Insure	that	Kubernetes has	the	correct	Pod	and	Service	CIDR	blocks



Key	Understanding	#2

Pod	network	is	not	seen
on	physical	network



Making	Setup	Easier: CNI

• Container	Network	Interface
• Relieves Kubernetes from	having	to	have specific	network	
configuration

• Activated	by	supplying	--network-plugin=cni, --cni-
conf-dir, --cni-bin-dir to	kubelet

• Typical	configuration	directory:	/etc/cni/net.d
• Typical	bin	directory:	/opt/cni/bin

• Allows	for	multiple	backends to	be	used:	linux-bridge,	macvlan,	
ipvlan,	Open	vSwitch,	network	stacks



CNI	Configuration

• CNI	is	configured	through	a	JSON	file
• CNI	generic	parameters	shown
• Plugins	are	allowed	to	have	their	
own	specific	parameters

• Kubelet will	use	the	configuration	
and	call	the	plugin	before	each	
container	starts

{
"cniVersion":	 "0.2.0",
"name":	 "mybridge",
"type":	 "bridge",
"bridge":	 "cni_bridge0",
"isGateway":	true,
"ipMasq":	 true,
"ipam":	 {
"type":	"host-local",
"subnet":	 "10.15.20.0/24",
"routes":	[
{	"dst":	"0.0.0.0/0"	},
{	"dst":	"1.1.1.1/32",	 "gw":"10.15.20.1"}

]
}

}



Demonstration



Key	Understanding	#3

Services	are	crucial	
for	service	discovery	and	
distributing	traffic	to	Pods



Kubernetes Services

• Services act	as	simple	internal	load	balancers	with	VIPs
• No	access	 controls
• No	traffic	controls

• IP	Tables	magically	route	to	virtual	IPs
• Internally Services	can	are	used	as	inter-Pod	service	discovery

• Kube-DNS	publishes DNS	record	(i.e.	nginx.default.svc.cluster.local)

• Services	can	be	exposed	three	different	ways
• ClusterIP,	LoadBalancer,	 NodePort



kube-proxy

• Each	Kubernetes node	in	the	cluster	runs	a	kube-proxy

• Two	modes:	userspace and	iptables
• iptables much	more	performant	– userspace should	no	longer	be	used

• kube-proxy	has	the	task	of	configuring	iptables to	expose	each	
Kubernetes service

• iptables rules	distributes	 traffic	randomly	across	the	endpoints



kube-proxy	Randomizer

• iptable rule	created	for	each	
endpoint	 listed	in	a	service

• Random	number	generated	
for	each	connection	 and	used	
for	routing	to	a	specific	node

• Last	iptable rule	accepts	all	
traffic	and	routes	to	node



Demonstration



Key	Understanding	#4

Ingresses	are	entry	points	
into	the	Kubernetes network



Kubernetes Ingress

• Exposes Services	outside	the	Kubernetes
network

• Most	Ingresses	are	layer	7	load	balancers	
(i.e.	HTTP/HTTPS)

• NGINX,	Traefik,	haproxy,	vulcand,	cloud	provider	
load	balancers

• F5 Container	Connector

• A	few	layer	4	load	balancers	available	but	no	
standard	yet

• NGINX



Network	Stack	Choices

• Flannel
• Most	popular	because	 it	is	simple	 and	easy	to	use

• Weave	Net
• A	bit	more	complex,	scales	 better	than	Flannel

• Project	Calico
• Similar	to	Weave	Net	(may	scale	 better),	but	one	of	the	few	that	provide	
egress	rules

• Romana
• Tailored	 a	bit	more	to	security	and	is	able	to	expose	Services	 as	real	world	
VIPs



Summary	of	Key	Understandings

• Every	Pod	can	communicate	directly	with	every	other	pod

• Pod	network	is	not	seen on	physical	network

• Services	are	crucial	for	service	discovery	and	distributing	
traffic	to	Pods

• Ingresses	are	entry	points	into	the	Kubernetes network


