
THE ARCHITECTURE OF A MULTI-
CLOUD ENVIRONMENT WITH

KUBERNETES
Brian Redbeard

CoreOS

brianredbeard

https://twitter.com/brianredbeard

LET ME TELL YOU SOME

LIES

atom by Jake Schirmer from the Noun Project



WHO
Organizations looking to run Kubernetes in a
redundant manner

WHAT
What to consider when building out a multi-cloud
k8s system?
What are common misunderstandings?

WHEN
When do these features hit general availability (GA)?

WHERE
What are the considerations? (broken down by
compute environment)

WHY
Can you answer why you want to do this?

HOW
How do we achieve these goals?

SECTION 1
THE PAST

CLOUD KIDS
THIS TIDBIT IS FOR YOU

" " by Edward Stojakovic Clouds

https://www.flickr.com/photos/akasped/14963879736

TO UNDERSTAND WHERE WE'RE AT

LET'S ANALYZE
AN EXAMPLE FROM THE PAST

ORACLE RAC
REAL APPLICATION CLUSTERS

TO USE RAC ONE HAD TO HAVE A

SAN

USING A SAN MEANT DEALING WITH

"WWN"S

WELCOME TO THE WONDERFUL WORLD OF

WORLD WIDE NAMES

1000B4744753DB5D
10.00.B4.74.47.53.DB.5D
B4.74.47.53.DB.5D
B4:74:47:53:DB:5D
B4:74:47 53:DB:5D

BUT THIS (LACK OF KNOWLEDGE) IS DRIVEN BY

THE CLOUD

DON'T GET BOGGED DOWN BY
WHAT THE CLOUD CAN'T DO

SECTION 2
PLANNING

MAPPING OUR
NEEDS

STEP 1

KNOW THE PROBLEM
ARE YOU SOLVING

FOR

 by Charles Barilleaux Sarah Shows Everyone What Really Running Is

https://www.flickr.com/photos/bontempscharly/9652163746

 by Blake Patterson A pile of RAM

https://www.flickr.com/photos/blakespot/6173837649

 by Wiskiknb Tcc

https://commons.wikimedia.org/wiki/File:Tcc.jpg

 by Tnarik Innael Global Thermonuclear War

https://www.flickr.com/photos/tnarik/2590869018/in/photolist-4WWT6u-9dbD87-5sxmew-oH25n

AKA
DO YOU KNOW WHAT YOUR

FAILURE DOMAINS ARE?

ARE YOU PREPARED TO ANSWER THESE



HINT: THE ANSWER
SHOULD BE YES

STEP 2

DEFINE YOUR ENVIRONMENTS
VIA CONFIGURATION MANIFESTS

AKA
CONFIGURATION AS CODE

HOW DOES
REDBEARD DO IT?

GIT
OBJECT STORAGE AND CONTROL

JENKINS
REPO MONITORING AND (RE)ACTION

GIT-CRYPT
GPG BASED STORAGE OF SECRETS

BUT YOU DON'T HAVE TO TAKE MY WORD
FOR IT

Reading Rainbow  PBS

terraform
kops
kubespray
helm charts

THE TOOLING IS LESS IMPORTANT THAN
COMMITTING TO THE PROCESS

STEP 3

ENSURE THAT YOUR NETWORK RANGES
ARE

NON OVERLAPPING

This doesn't seem like a big deal, but please... just
make sure the ranges do not overlap.

NEED SOME HELP WITH THIS?

HTTPS://GITHUB.COM/TSCHUY/CIDRBLOCKS

https://github.com/tschuy/cidrblocks

NEED SOME HELP WITH THIS?

HTTPS://GITHUB.COM/TSCHUY/CIDRBLOCKS

https://github.com/tschuy/cidrblocks

STEP 4

KNOW WHAT YOUR STORAGE IS

STOP FREAKING OUT ABOUT
STORAGE

SERIOUSLY

WHAT'S YOUR PLATFORM?

AWS
Elastic Block Storage (EBS)

GCP
Persistent Disks

AZURE
Disks

(Premium / Standard)
(Managed / Unmanaged)

WHAT'S (GENERICALLY)
HAPPENING UNDER THE HOOD?

  

  

  

  

KUBERNETES IS
GIVING YOU

SHOULDERS TO
STAND ON

RWO
ReadWriteOnce

  

ROX
ReadOnlyMany

  

RWX
ReadWriteMany

JUST BECAUSE YOU'VE NEVER
DONE IT ON THE CLOUD
DOESN'T MEAN IT'S NOT

POSSIBLE

BARE METAL
HINT: IT WORKS VERY SIMILARLY

SAN Disks (iSCSI, Fibre Channel, etc)
Cinder
Ceph (cephfs / RBD)
etc

YOU JUST NEED AN
API FOR STORAGE

APIS FOR STORAGE
EXIST

AND IT DOESN'T HAVE TO BE
`SPENSIVE

free/libre IP SAN FreeBSD distro

FREENAS.ORG

http://www.freenas.org/

    

CONFIGURE RAID

EXPORT ISCSI

SECTION 3
SETUP

PUTTING TOGETHER
THE PIECES

 by Bill Ward Lego Advent 2015 Day 15

https://www.flickr.com/photos/billward/23146886284

SO WHAT DO WE NEED TO
WORRY ABOUT?

HINT: THEY'RE THE THINGS YOU
SHOULD ALREADY BE DOING

SINGLE SIGN ON
DON'T RUN LOCAL USERS ON YOU CLUSTERS

components

dex

ldap / oidc

LOG AGGREGATION
COLLECT LOGS (HOST, K8S, APPLICATION) IN A

CENTRAL LOCATION

components

fluentd

elasticsearch

kibana

MONITORING &
ALERTING

MEASURE PERFORMANCE & ALERT ON PROBLEMS

components

prometheus (metrics)

alert manager (alerting)

jaeger

DNS
CONFIGURATION

FEDERATE YOUR DNS

components

coredns

your existing DNS infrastructure

RBAC
CONFIGURATION

SYNC YOUR CONFIGS ACROSS YOUR CLUSTERS

components

continuous deployment (jenkins, spinnaker)

TRAFFIC
DISTRIBUTION

CLUSTER TRAFFIC NEEDS REDUNDANCY

components

cloud load balancers

BGP + ECMP

F5 / Netscaler / ACE

DEMAND NETWORK
APIS

IN DISTRIBUTED SYSTEMS, EVERYTHING IS A
NETWORK SERVICE

SECTION 4
EXECUTION

TAKING ACTION

STEP 1
CLUSTER PROVISIONING

UNDERSTAND THE STAGES OF
CLUSTER INITIALIZATION

host deployment & configuration
etcd deployment
master node deployment
worker node deployment

cluster configuration

HOST DEPLOYMENT
& CONFIGURATION

Normalize & templatize your host configuration
(Easy with Container Linux)

same manifests can be used for bare metal and
cloud
If using kickstart + cloud-config break things down
to minimal state (or use ansible)

Avoid "static" configs (network, etc)

CLUSTER
CONFIGURATION

Kubelet flags - Ensure everything is "under
management"
Use robots* to do your bidding

ROBOTS YOU SAY?!
PEOPLE LOVE TO HATE ON JENKINS...
BUT THIS BUTLER DOES OUR BIDDING

K8S DEPLOYMENTS
step by step:

PIPELINE STAGES:

unlock credentials (git-crypt)

PULL OUR KEY FROM ESCROW (PT 1)
def gitCryptUnlock(credsId) {

 def key = [file(credentialsId: credsId, variable: 'GIT_CRYPT_K

 withCredentials(key) {

 ansiColor('xterm') {

 sh '''#!/bin/bash -xe

 git-crypt status >/dev/null

 git-crypt unlock <(base64 -d "${GIT_CRYPT_KEY}")

 '''

 }

 }

}

PULL OUR KEY FROM ESCROW (PT 2)
 stage('unlock') {

 steps {

 script {

 gitCryptUnlock('infra-terraform-key')

 }

 }

PIPELINE STAGES:

unlock credentials (git-crypt)
lint/validate the config (git clean -fdx &
terraform validate)

LINT AND VALIDATE OUR CONFIG (PT 1)
 stage('validate') {

 steps {

 withCredentials(aws['coreos']) {

 ansiColor('xterm') {

 sh 'git clean -fdx'

 sh './scripts/ci'

 }

 }

 }

 }

LINT AND VALIDATE OUR CONFIG (PT 2)
LINT_DIRS=(global us-west-1 us-central1)

for ldir in ${LINT_DIRS[@]}; do

 for dir in $(find "${ldir}" -name 'backend.tf' -printf \

 '%h\n' | uniq); do

 pushd "${dir}" >/dev/null

 # This is required as of Terraform 0.10.0 because

 # the plugins must be downloaded before validation.

 terraform init -input=false

 terraform validate

 popd

 done

done

LINT AND VALIDATE OUR CONFIG (PT 3)
for ldir in ${LINT_DIRS[@]}; do

 # The `fmt` command doesn't seem to exit non-zero if there

 # are formatting changes needed.

 FILES="$(terraform fmt -list=true -write=false "${ldir}")"

 if [-n "${FILES}"]; then

 echo "==> The following files need formatting changes:"

 echo "${FILES}"

 exit 1

 fi

done

PIPELINE STAGES:

unlock credentials (git-crypt)
lint/validate the config
git clean -fdx

terraform validate

do a dry run (terraform plan)
ask for a human to confirm the work (slack
message)
deploy (terraform apply)

WORKING IN THIS WAY, ADDING A
NEW CLUSTER IS AS EASY AS
DEFINING AN ENVIRONMENT

STEP 2
Maintaining what you have

WE ALSO USE A SIMILAR SET OF
JOBS TO MANAGE THE EXISTING

ENVIRONMENTS

ENVIRONMENT DEFINITIONS:
def clusters = [

 'us-west-1': [

 ['name': 'dev-v1519', 'path': 'clusters/us-west-1/dev-v1519.

 ['name': 'prod-v1472', 'path': 'clusters/us-west-1/prod-v1472

],

 'us-east-1': [

 ['name': 'prod-v1507', 'path': 'clusters/us-east-1/prod-v1507

]

]

(PRETTY FAMILIAR) PIPELINE STAGES:

unlock credentials (git-crypt)
lint/validate the config
git clean -fdx

helm lint

helm upgrade

THANKS TO BRAD ISON WITH COREOS
INFRASTRUCTURE

BISON�

STEP 3
Manual operations

DON'T

JUST DON'T

FINE...

MAKE SURE YOU
--EXPORT

kubectl get -o yaml --export=true deployment myapp

Thanks to Duffie Cooley! - coresolve

https://github.com/coresolve

THIS REMOVES ALL CLUSTER
SPECIFIC INFORMATION FROM

THE RESOURCE
You're then just a kubectl apply away from
mucking up all of the work your robot has done

STEP 4
Disaster recovery

THINGS WILL GO WRONG

HAVE A PLAN
TEST THE PLAN

BACKUP ETCD
ETCDCTL_API=3 /opt/bin/etcdctl snapshot save backup.db

RUN MULTIPLE CLUSTERS
IN DIFFERENT FAILURE DOMAINS

USE PURPOSE BUILT TOOLS

/HEPTIO/ARK
"A UTILITY FOR MANAGING DISASTER RECOVERY,
SPECIFICALLY FOR YOUR KUBERNETES CLUSTER

RESOURCES AND PERSISTENT VOLUMES"

WHO
You

WHAT
What to consider when building out a multi-cloud
and multi-environment k8s system?

What are common misunderstandings?

WHEN
When do these features hit general availability (GA)?

All of this is possible today

WHERE
What are the considerations? (broken down by
compute environment)

WHY
Can you answer why you want to do this?

HOW
How do we achieve these goals?

Free for up to 10 nodes!

https://coreos.com/tectonic

https://coreos.com/tectonic

WE'RE HIRING

https://coreos.com/jobs

https://coreos.com/jobs

THANKS
 brianredbeard

 brianredbeard

 redbeard@coreos.com

https://twitter.com/brianredbeard
https://github.com/brianredbeard
mailto:redbeard@coreos.com

