SQUASH

Debugger for microservices

Idit Levine
solo.io

About me

|dit Levine
Founder and CEO of solo.io

W
b

solo.io

g @Idit_Levine
I ' @ilevine

X .

unik

kubernetes
4¢Usﬂo

&

envoy

The problem:

Debugging microservices
applications is hard

The problem

A monolithic application
consists of a single process

An attached debugger allows
viewing the complete state of
the application during runtime

Data

Business

\ Access Microservice
Logic Layer

Microservice

A microservices application
consists of potentially hundreds
of processes

Microservice Microservice

Is it possible to get a complete
view of the state of a such
application?!

Monolithic Architecture Microservice Architecture

The problem

500+ microservices

500+ microservices

450+ microservices

\ \
A\ !'.’ ! l”
il 1l gy

\\Q
N g
\\\\33:;\\\\\\\ Ly ‘/‘,,
R %
o~ L
*\Q\ N o
.:;$ \\. = £ o & e
— S0 § —
=‘;=-E A, =
e N PN, EE’*‘
\ \ S —
- S5
{\:
/ ST
N
77’ S NN
Va4 NN,
; RN
7 AR

& NETFLIX

The problem

& Honest Status Page
By @honest_update

murder mystery.

4:10 PM - 7 Oct 2015

QO 20 11 3.0K) 25K

We replaced our monolith with micro services
so that every outage could be more like a

3,028 Retweets 2,476 Likes {';‘E & Q @ gi “ ‘ @ e

™

Solution |

OpenTracing

OpenTracing

Edge service

Unique ID - {context}

fcontext}

fcontext}

fcontext}
fcontext}

. assign a unique identifier to

each request at the edge service

. store it in a context object, along

with other metadata

. propagate the context across

process boundaries (in-band)

. baggage is arbitrary K/V

. capture timing, events, tags and

collect them out-of-band (async)

. re-assemble the call tree from the

storage for the Ul

OpenTracing

Edge service

Unique ID - {context}

fcontext}

fcontext}

TRACE

fcontext}
fcontext}

SPANS

OpenTracing Architecture

Span Context / Bagyage i
-I'ar?m Span | B o — = o — — l:lllllll slian | -

spans - basic unit of timing and causality. can be tagged with key/value pairs.
logs - structured data recorded on a span.

span context - serializable format for linking spans across network boundaries.
carries baggage, such as a request and client IDs.

tracers - anything that plugs into the OpenTracing API to record information.
ZipKin, jaeger & lightstep. but also metrics (Prometheus) and logging.

OpenTracing

U

OPENTRACING

OpenTracing is a consistent, expressive, vendor-neutral
APls for popular platforms, OpenTracing makes it easy for
developers to add (or switch) tracing implementations with
an O(1) configuration change.

-1 CLOUD NATIVE

L = COMPUTING FOUNDATION

OpenTracing Demo

OpenTracing uses

logging - easy to output to any logging tool, even from OSS components.
metrics/alerting - measure based on tags, span timing, log data.

context propagation - use baggage to carry request and user ID’s, etc.

critical path analysis - drill down into request latency in very high fidelity.

system topology analysis - identify bottlenecks due to shared resources.

&

OPENTRACING

OpenTracing limitations

openTracing does not provide run-time debugging

openTracing requires wrapping and changing the code

no holistic view of the application state — can only see what was printed
the process (repeatedly modify the application and test) is expansive

Impossible to change variable values in runtime

logging and printing results in performances overhead

Solution Il

Squash

Squash brings the power of modern popular debuggers to developers of microservices
apps that run on container orchestration platforms.

Squash bridges between the orchestration platform (without changing it) and IDE.

With Squash, you can:

» Live debugging cross multi microservices
* Debug container in a pod

 Debug a service

» Set breakpoints

« Step through the code

* View and modify values of variables
* and more ... quas

Squash Demo

Squash Architecture

Squash server: holds the information about the
breakpoints for each application, orchestrates and controls
the squash clients. Squash server deploys and runs on
Kubernetes

Squash client: deploys as daemon set on Kubernetes
node. The client wraps as docker container, and also
contains the binary of the debuggers.

Squash User Interface: squash uses IDEs as its user
interface. After installing the Squash extension, Squash
commands are available in the IDE command palette.

What vegetable scares all the bugs?
Squash!”

one of my 8-year old daughter's
favorite riddles

Squash Architecture: vs code extension

vs code extension =¥ kubectl
o s to present the user pod/container/debugger

: Stop Debug Service

: Debug Container

: Resume Debug Session u

: Release Debug Session O ptl O n S
op2, : 1= strconv.Atoi(r.FormvValue("op2"))
isadd := optype == "add"

calc := Calculator{
Opl: opl, Op2: op2, IsAdd: isadd,

: | vs code extension =» Squash server with

jsoncalc := json.Marshal(calc)

, 1=
var jsoncalcreader io.Reader = bytes.NewReader(jsoncalc) . L [}
resp, err := http.Post("http://"+ServiceToCall+"/calculate", "application/json", jsoncalcr e u g CO n Ig po CO nta I n e r e u g g e r
if err !=n {

fmt.Fprintf(w, form, ", ", “v, wv, e, v err)

) ' /breakpoint) =» waits for debug session

if resp.StatusCode != http.StatusOK {

fmt.Fprintf(w, form, ", "« “v, e, o,
rn

vs code extension =% connects to the
debug server & transfers control to the
native debug extension.

#

Pmaster* S0L1T ©QO0A2 Ln81,Col6 TabSize:4 UTF-8 LF Go @

Squash Architecture: Squash Server

vs code extension =¥ Squash server

Squash server =» relevant Squash client with debug
config (pod/container/debugger /breakpoint)

Sq uaSh Squash server =» waits for debug session

Squash Architecture: Squash Client

Squash server = Squash client

Squash client =» container runtime interface (to
obtain the container host pid)

Squash client =¥ runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client =¥ return debug session.

Squash Architecture: Squash Client

Squash server = Squash client

Squash client =» container runtime interface (to
obtain the container host pid)

Squash client =¥ runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client =¥ return debug session.

obtain host pid

Squash Client runs at the host namespace —we need to
translate the pid of the process (application that run in
the container) to the host pid namespace to allow
debugger to attach.

H B * lItis not going to be always container of docker type

Squash Client

obtain host pid

Squash Client

-> [s -l /proc/self/ns

totalo

[rwxrwxrwx 1 idit idit o Dec 7 01:14 cgroup -> cgroup:[4026531835]
[rwxrwxrwx 1 idit idit o Dec 7 01:14 ipc -> ipc:[4026531839]

[rwxrwxrwx 1 idit idit o Dec 7 01:14 mnt -> mnt:[4026531840]
[rwxrwxrwx 1 idit idit o Dec 7 01:14 net -> net:[4026532009]

[rwxrwxrwx 1 idit idit o Dec 7 01:14 pid -> pid:[4026531836]

[rwxrwxrwx 1 idit idit o Dec 7 01:14 pid_for_children -> pid:[4026531836]
[rwxrwxrwx 1 idit idit o Dec 7 01:14 user -> user:[4026531837]
Irwxrwxrwx 1 idit idit o Dec 7 01:14 uts -> Uts:[4026531838]

-> inod of mnt namespace (unique identifier to the container namespace)

via CRI api call ExecSyncRequest

obtain host pid

func FindPidsInNS(inod uint64, ns string) ([Jint, error) {
var res [Jint
files, err := ioutil.ReadDir("/proc")
if err!'=nil {
return nil, err

}
- for _, f:=range files {

if 'f.IsDir() {
continue

}

pid, err := strconv.Atoi(f.Name())
. - if err !=nil {

continue

}

p := filepath.Join("/proc", f.Name(), "ns", ns)
v . . if inod2, err := processwatcher.PathTolnode(p); err != nil §

continue
}else ifinod == inod2 §{
res = append(res, pid)
Squash Client } }

return res, nil

}

obtain host pid

Squash Client

Squash Client runs at the host namespace —we need to
translate the pid of the process (application that run in
the container) to the host pid namespace to allow
debugger to attach.

* Itis not going to be always container of docker type
* What if the container cannot runls ?

Squash Architecture: Squash Client

Squash server = Squash client

Squash client =» container runtime interface (to
obtain the container host pid)

Squash client =¥ runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client =¥ return debug session.

squash client: debuggers

Squash Client

FROM ubuntu:16.04

RUN apt-get update

RUN apt-get install --yes gdb build-essential
RUN apt-get install --yes git

RUN apt-get install --yes curl

RUN apt-get install --yes golang-1.8-go

RUN curl https://storage.googleapis.com/golang/go1.8.linux-amd64.tar.gz | tar -C Jusr/lib -xz

ENV GOROOT /usr/lib/go

ENV GOPATH /gopath

ENV GOBIN /gopath/bin

ENV PATH $PATH:$GOROOT/bin:$GOPATH/bin

RUN mkdir -p $GOPATH/src/github.com/derekparker/ && cd $GOPATH)/src/github.com/derekparker/ && git
clone https://github.com/derekparker/delve/

RUN cd $GOPATH/src/github.com/derekparker/delve/ && git checkout v1.0.0-rc.1

RUN cd $GOPATHY/src/github.com/derekparker/delve/cmd/dlv && go install

COPY squash-client /

EXPOSE 1234

ENTRYPOINT ["/squash-client"]

Squash Architecture: Squash Client

Squash server = Squash client

Squash client =» container runtime interface (to
obtain the container host pid)

Squash client =¥ runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client =¥ return debug session.

multt languages support

£

} [— =
3
_.3- -
- N
n de
i~]

— Squash -

Squash Client Squash Client

Squash high level Architecture

(DODELVE
&
5
})
kubernetes ey

Squash

Squash high level Architecture

Add Mesos/Marathon platform support

cdennison opened this issue 2 days ago - 5 comments

cdennison commented 2 days ago

Hi everyone,

| was thinking about adding Mesos/Marathon support, but there is a technical limitation on the tooling
side - they don't support "docker exec" yet from their CLI - for doing things like "getting the pid."

It looks like Docker Swarm has the same issue (@crackerplace) - there are third party tools like
this but nothing bundled with the official tool.

Here are a couple ideas | had for how to achieve that functionality, but none of them are ideal so I'd love
your thoughts. | can also jump on slack to discuss further.

Goal is to achieve this:

req := &kubeapi.ExecSyncRequest{
ContainerId: containerid,
Cmd: [I1string{"1s", "-1", "/proc/self/ns/"},
Timeout: 1,

}

context.WithTimeout(origctx, time.Second)
cli.ExecSync(ctx, req)

ctx, cancel :
result, err

Add Swarm platform support

crackerplace opened this issue 10 days ago - 5 comments

|-| crackerplace commented 10 days ago

Just started getting some comfort level with the code.
Would like to to add swarm support for squash incrementally.

Add support for python's pdb and/or the iPython debugge
SEJeff opened this issue on Sep 7 - 1 comment

. SEJeff commented on Sep 7

For those of us who run python web applications in production

Squash high level Architecture

(DODELVE
&
5
})
kubernetes ey

Squash

Squash high level Architecture

IPIyl:

s IPython
(2 Nomad d

(DODELVE
‘III’ oFDe
kubernetes ek

&% Squash

CLOUDF@UNDRY
<x

MESOS

AVAVA
AVAVAVA
VAVAVAVY

VAVAY

iiiiii

Platform Interface

/// Minimal represntation of a container, containing only the data squash cares about -
[/l The container's name, image and the node it runs on.
type Container struct {

Name, Image, Node string

}

/Il Runs in the squash server:

[l Get the container object from its name.
/| Note: in environment like kubernetes, the containername will be namespace:pod-name:container-name
type ContainerLocator interface §

Locate(context context.Context, attachment interface{}) (interface{}, *Container, error)

}

/I Runs in the squash client:

/] Get the pid of a process that runs in the container. the pid should be in our pid namespace,
[/ not in the container's namespace.
type Container2Pid interface {

GetPid(context context.Context, attachment interface}) (int, error)

}

type DataStore interface {
Store()
Load()

}

5

kubernetes

CLOUD FQUNDRY
<X

Debuggers interface

(DODELVE

package debuggers

type DebugServer interface {
Detach() error

Port() int GDB

} The GNU Project
Debugger

/// Debugger interface. implement this to add a new debugger support to squash.
type Debugger interface {

/// Attach a debugger to pid and return the port that the debug server listens on. I P [y] :
Attach(pid int) (DebugServer, error) IPython

}

@ python

Debugging
7~ with pdb

...and add it to the client docker file

Squash: IDE

Eclipse Extension Points and Extensions - Tutorial

Lars Vogel (c) 2008, 2016 vogella GmbH - Version 2.5, 06.07.2016

Table of Contents

o Visual Studio | Marketplace

Prerequisites for this tutorial
Visual Studio Code > Debuggers > Squash Extensions and extension points
Creating an extension point

il

2

&b

4. Adding extensions to extension points

Squash 5. Accessing extensions

Idit Levine | & 292installs | % % % % % (0) & Extension Factories
7. Exercise: Create and evaluate an extension point
8.
9.

Debug microservices with Squash About this website

Links and Literature
Trouble Installing? 2 Appendix A: Copyright and License

Eclipse Extension Points. This tutorial describes the definition and usage of the Eclipse Extension

Overview Q& A Rating & Review

Points. The article is written for and Eclipse 4.2 but you can easily adjust it for Eclipse 3.x.

=3 DS

IntelliJ Platform SDK DevGuide

Squas

Debugger for microservices
. The IntelliJ Platform provides the concept of extensions and extension points that allows a plugin to interact with other plugins
VS Code extension or with the IDE itself.

Plugin Extensions and Extension Points

Debug your microservices application from VS Code. Extension points

If you want your plugin to allow other plugins to extend its functionality, in the plugin, you must declare one or several extension

points. Each extension point defines a class or an interface that is allowed to access this point.

Extensions

If you want your plugin to extend the functionality of other plugins or the IntelliJ Platform, you must declare one or several

extensions.

How to declare extensions and extension points

You can declare extensions and extension points in the plugin configuration file plugin.xml, within the <extensions> and

<extensionPoints> sections, respectively.

Squash: open source project

We are looking for community help to add support for more debuggers,
platforms and IDEs.

Check out at github:
https://github.com/solo-io/squash

Squash

Solution Il

Service mesh

Service Mesh

Service mesh data plane:

Touches every packet/request in the system.
Responsible for service discovery, health
checking, routing, load balancing,
authentication/authorization, and
observability.

Service mesh control plane:

Provides policy and configuration for all
the running data planes in the mesh. Does
not touch any packets/requests in the
system. The control plane turns all of the
data planes into a distributed system.

Service B

Sidecar proxy

/-)

Service C

Sidecar proxy

Service A

Sidecar proxy

Service D

4

Sidecar proxy

The network should be
En on - data p lane transparent to applications.
When network and
application problems do
occur it should be easy to
determine the source of
the problem.

Out of process architecture: developers to focus on business logic

Modern C++11 code base: Fast and productive.

L3/L4 filter architecture: Can be used for things other than HTTP
(TCP proxy at its core) ('[‘.

HTTP L7 filter architecture: Make it easy to plug in different functionality.
HTTP/2 first! (Including gRPC and a nifty gRPC HTTP/1.1 bridge).
Service discovery and active health checking.

Advanced load balancing: Retry, timeouts, circuit breaking, rate limiting, shadowing, etc.
Best in class observability: stats, logging, and tracing.

Edge proxy: routing and TLS.

Istio — control plane

Pilot: responsible for the lifecycle of
Envoy instances deployed across the

Control Plane API

Istio service mesh. Pilot exposes APls for e

- "] Control flow during)])
service discovery, dynamic updates to “request processing [Pilot] [Mixer] [Istio-Auth }
load balancing pools and routing i T

tables. b

TLS certs
to Envoy

Policy checks,
telemetry

Mixer: provides Precondition Checking

(authentication, ACL checks and more), NP TP Wit Envoy e bz — Envoy

Quota Management and Telemetry without TLS HithoutTES \

Reporting. sveA | ,\ sveB

e g \ oy ——

Service A Service B

Istio-Auth enhance the security of | |

microservices and their communication Istio Architecture

without requiring service code changes.

Towards an integrated solution

Service mesh,
OpenTracing, and
Squash

The whole solution

Step 1:

vs code extension = Squash server creates a
debug config (service & image) and waits for the
debug session to connect.

Step 2:
envoy gets a curl request with squash header

Step 3:
=» envoy asks Squash server to debug itself
(namespace & pod) and waits for the debug session.

)

The whole solution

Step 4:
Squash server = Squash client

Squash client =¥ container runtime interface (to obtain the
container host pid)

Squash client =¥ runs the debugger, attaches it to the
process in the container, and sets the application breakpoints

Squash client =¥ returns debug session.

Step 5:

vs code extension =¥ connects to the ——
debug server & transfers control to the

native debug extension.

envoy resumes traffic to the app

Envoy plugin

Envoy::Http::FilterHeadersStatus
SquashFilter::decodeHeaders(Envoy::Http::HeaderMap& headers, bool) {

if (squash_cluster_name_.empty()) {
ENVOY_LOG(warn, "Squash: cluster not configured. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;

}

/| check for squash header
const Envoy::Http::HeaderEntry* squasheader =
headers.get(Envoy::Http::LowerCaseString("x-squash-debug"));

if (squasheader == nullptr) {
ENVOY_LOG(warn, "Squash: no squash header. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;

}

// get pod and container name

const char* podc = std::getenv("POD_NAME");

if (podc == nullptr) {

ENVOY_LOG(warn, "Squash: no podc. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;

}

std::string pod(podc);

if (pod.empty()) {

ENVOY_LOG(warn, "Squash: no pod string. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;

}

only be added if squash server install &
not in squash pods — configuration in pilot

const char* podnamespacec = std::getenv("POD_NAMESPACE");
if (podnamespacec == nullptr) {

ENVOY_LOG(warn, "Squash: no podnamespacec. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;

}

std::string podnamespace(podnamespacec);

if (podnamespace.empty()) {

ENVOY_LOG(warn, "Squash: no container string. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;

}

ENVOY_LOG(info, "Squash:we need to squash something");

/] get squash service cluster object

// async client to create debug config at squash server

// when it is done, issue a request and check if it is attached.

/[retry until it is. or until we timeout

// continue decoding.

Envoy::Http::MessagePtr request(new Envoy::Http::RequestMessagelmpl());
request->headers().insertContentType().value(std::string("application/json"));
request->headers().insertPath().value(std::string("/api/v2/debugattachment"));
request->headers().insertHost().value(std::string("squash-server"));
request->headers().insertMethod().value(std::string("POST"));

std::string body = "{\"spec\":{\"attachment\":{\"pod\":\"" + pod + "\" \"namespace\":\"" +
podnamespace + "\"}, \"match_request\":true}}";

request->body().reset(new Envoy::Buffer::Ownedimpl(body));

state_ = CREATE_CONFIG;

in_flight_request_ =
cm_.httpAsyncClientForCluster(squash_cluster_name_).send(std::move(request), *this,
timeout_);

return Envoy::Http::FilterHeadersStatus::Stoplteration;
}

Istio — envoy leverage

Debug in production without pausing Squash
the cluster!
L\ IStIo
* Pilot support for envoy plugins — today hardcoded (Envoy
plugin extension without recompile @

- We will work with it with envoy and istio team and envoy

contribute the code upstream “I'\

OPENTRACING

Service Mesh Demo

Future 1deas

Can automate by leveraging similar mechanism of
envoy retries:

- on getting response of 500 (internal errors) run the
request with squash header.

Integration with github

Web browser IDE

Integration with OpenTracing

Detect latency and zoom in the debug

OPENTRACING

Check Squash out: github.com/solo-io/squash

Squash

