
SQUASH
Debugger for microservices

Idit Levine
solo.io

About me
Idit Levine
Founder and CEO of solo.io

@Idit_Levine

@ilevine

Debugging microservices
applications is hard

The problem:

The problem
A monolithic application
consists of a single process

An attached debugger allows
viewing the complete state of
the application during runtime

A microservices application
consists of potentially hundreds
of processes

Is it possible to get a complete
view of the state of a such
application?!

The problem

The problem

OpenTracing

Solution I

OpenTracing

A

B

E

D

C

Edge service
Unique ID → {context}

{context}

{context}

{context}
{context}

1. assign a unique identifier to
each request at the edge service

2. store it in a context object, along
with other metadata

3. propagate the context across
process boundaries (in-band)

4. baggage is arbitrary K/V

5. capture timing, events, tags and
collect them out-of-band (async)

6. re-assemble the call tree from the
storage for the UI

OpenTracing

A

B

E

D

C

Edge service
Unique ID → {context}

{context}

{context}

{context}
{context}

A

B

E

C

D

TRACE

SPANS

OpenTracing Architecture

spans - basic unit of timing and causality. can be tagged with key/value pairs.
logs - structured data recorded on a span.

span context - serializable format for linking spans across network boundaries.
carries baggage, such as a request and client IDs.

tracers - anything that plugs into the OpenTracing API to record information.
zipKin, jaeger & lightstep. but also metrics (Prometheus) and logging.

OpenTracing

OpenTracing is a consistent, expressive, vendor-neutral
APIs for popular platforms, OpenTracing makes it easy for
developers to add (or switch) tracing implementations with
an O(1) configuration change.

OpenTracing Demo

OpenTracing uses

logging - easy to output to any logging tool, even from OSS components.

metrics/alerting - measure based on tags, span timing, log data.

context propagation - use baggage to carry request and user ID’s, etc.

critical path analysis - drill down into request latency in very high fidelity.

system topology analysis - identify bottlenecks due to shared resources.

OpenTracing limitations

openTracing does not provide run-time debugging

openTracing requires wrapping and changing the code

no holistic view of the application state – can only see what was printed

the process (repeatedly modify the application and test) is expansive

Impossible to change variable values in runtime

logging and printing results in performances overhead

Squash

Solution II

Squash brings the power of modern popular debuggers to developers of microservices
apps that run on container orchestration platforms.

Squash bridges between the orchestration platform (without changing it) and IDE.

With Squash, you can:

• Live debugging cross multi microservices
• Debug container in a pod
• Debug a service
• Set breakpoints
• Step through the code
• View and modify values of variables
• and more ...

Squash Demo

Squash Architecture

Squash server: holds the information about the
breakpoints for each application, orchestrates and controls
the squash clients. Squash server deploys and runs on
Kubernetes

Squash client: deploys as daemon set on Kubernetes
node. The client wraps as docker container, and also
contains the binary of the debuggers.

Squash User Interface: squash uses IDEs as its user
interface. After installing the Squash extension, Squash
commands are available in the IDE command palette.

What vegetable scares all the bugs?
Squash!”

one of my 8-year old daughter's
favorite riddles

Squash Architecture: vs code extension

vs code extension � kubectl
to present the user pod/container/debugger
options

vs code extension � Squash server with
debug config (pod/container/debugger
/breakpoint) � waits for debug session

vs code extension � connects to the
debug server & transfers control to the
native debug extension.

Squash Architecture: Squash Server

vs code extension � Squash server

Squash server � relevant Squash client with debug
config (pod/container/debugger /breakpoint)

Squash server � waits for debug session

Squash Architecture: Squash Client

Squash server � Squash client

Squash client � container runtime interface (to
obtain the container host pid)

Squash client � runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client � return debug session.

Squash Architecture: Squash Client

Squash server � Squash client

Squash client � container runtime interface (to
obtain the container host pid)

Squash client � runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client � return debug session.

obtain host pid
CRI

Squash Client

Squash Client runs at the host namespace – we need to
translate the pid of the process (application that run in
the container) to the host pid namespace to allow
debugger to attach.

• It is not going to be always container of docker type

obtain host pid
CRI

Squash Client

-> ls -l /proc/self/ns

total 0
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 cgroup -> cgroup:[4026531835]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 ipc -> ipc:[4026531839]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 mnt -> mnt:[4026531840]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 net -> net:[4026532009]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 pid -> pid:[4026531836]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 pid_for_children -> pid:[4026531836]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 user -> user:[4026531837]
lrwxrwxrwx 1 idit idit 0 Dec 7 01:14 uts -> uts:[4026531838]

-> inod of mnt namespace (unique identifier to the container namespace)

via CRI api call ExecSyncRequest

obtain host pid
CRI

Squash Client

func FindPidsInNS(inod uint64, ns string) ([]int, error) {
var res []int
files, err := ioutil.ReadDir("/proc")
if err != nil {

return nil, err
}

for _, f := range files {
if !f.IsDir() {

continue
}
pid, err := strconv.Atoi(f.Name())
if err != nil {

continue
}

p := filepath.Join("/proc", f.Name(), "ns", ns)
if inod2, err := processwatcher.PathToInode(p); err != nil {

continue
} else if inod == inod2 {

res = append(res, pid)
}

}

return res, nil
}

obtain host pid
CRI

Squash Client

Squash Client runs at the host namespace – we need to
translate the pid of the process (application that run in
the container) to the host pid namespace to allow
debugger to attach.

• It is not going to be always container of docker type
• What if the container cannot run ls ?

Squash Architecture: Squash Client

Squash server � Squash client

Squash client � container runtime interface (to
obtain the container host pid)

Squash client � runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client � return debug session.

squash client: debuggers
CRI

Squash Client

FROM ubuntu:16.04

RUN apt-get update
RUN apt-get install --yes gdb build-essential
RUN apt-get install --yes git
RUN apt-get install --yes curl
RUN apt-get install --yes golang-1.8-go

RUN curl https://storage.googleapis.com/golang/go1.8.linux-amd64.tar.gz | tar -C /usr/lib -xz

ENV GOROOT /usr/lib/go
ENV GOPATH /gopath
ENV GOBIN /gopath/bin
ENV PATH $PATH:$GOROOT/bin:$GOPATH/bin

RUN mkdir -p $GOPATH/src/github.com/derekparker/ && cd $GOPATH/src/github.com/derekparker/ && git
clone https://github.com/derekparker/delve/
RUN cd $GOPATH/src/github.com/derekparker/delve/ && git checkout v1.0.0-rc.1
RUN cd $GOPATH/src/github.com/derekparker/delve/cmd/dlv && go install

COPY squash-client /

EXPOSE 1234

ENTRYPOINT ["/squash-client"]

Squash Architecture: Squash Client

Squash server � Squash client

Squash client � container runtime interface (to
obtain the container host pid)

Squash client � runs the debugger, attaches it to the
process in the container, and sets the application
breakpoints

Squash client � return debug session.

multi languages support
CRI

Squash Client

CRI

Squash Client

Squash high level Architecture

Platforms IDEs Debuggers

Squash high level Architecture

Squash high level Architecture

Platforms IDEs Debuggers

Squash high level Architecture

Platforms IDEs Debuggers

Platform Interface
/// Minimal represntation of a container, containing only the data squash cares about -
/// The container's name, image and the node it runs on.
type Container struct {

Name, Image, Node string
}

/// Runs in the squash server:

/// Get the container object from its name.
// Note: in environment like kubernetes, the containername will be namespace:pod-name:container-name
type ContainerLocator interface {

Locate(context context.Context, attachment interface{}) (interface{}, *Container, error)
}

/// Runs in the squash client:

/// Get the pid of a process that runs in the container. the pid should be in our pid namespace,
/// not in the container's namespace.
type Container2Pid interface {

GetPid(context context.Context, attachment interface{}) (int, error)
}

type DataStore interface {
Store()
Load()

}

Debuggers interface

package debuggers

type DebugServer interface {
Detach() error
Port() int

}

/// Debugger interface. implement this to add a new debugger support to squash.
type Debugger interface {

/// Attach a debugger to pid and return the port that the debug server listens on.
Attach(pid int) (DebugServer, error)

}

… and add it to the client docker file

Squash: IDE

We are looking for community help to add support for more debuggers,
platforms and IDEs.

Check out at github:
https://github.com/solo-io/squash

Squash: open source project

Service mesh

Solution III

Service Mesh

Service mesh data plane:
Touches every packet/request in the system.
Responsible for service discovery, health
checking, routing, load balancing,
authentication/authorization, and
observability.

Service mesh control plane:
Provides policy and configuration for all
the running data planes in the mesh. Does
not touch any packets/requests in the
system. The control plane turns all of the
data planes into a distributed system.

Envoy – data plane
Out of process architecture: developers to focus on business logic

Modern C++11 code base: Fast and productive.

L3/L4 filter architecture: Can be used for things other than HTTP
(TCP proxy at its core)

HTTP L7 filter architecture: Make it easy to plug in different functionality.

HTTP/2 first! (Including gRPC and a nifty gRPC HTTP/1.1 bridge).

Service discovery and active health checking.

Advanced load balancing: Retry, timeouts, circuit breaking, rate limiting, shadowing, etc.

Best in class observability: stats, logging, and tracing.

Edge proxy: routing and TLS.

The network should be
transparent to applications.
When network and
application problems do
occur it should be easy to
determine the source of
the problem.

Istio – control plane
Pilot: responsible for the lifecycle of
Envoy instances deployed across the
Istio service mesh. Pilot exposes APIs for
service discovery, dynamic updates to
load balancing pools and routing
tables.

Mixer: provides Precondition Checking
(authentication, ACL checks and more),
Quota Management and Telemetry
Reporting.

Istio-Auth enhance the security of
microservices and their communication
without requiring service code changes.

Service mesh,
OpenTracing, and

Squash

Towards an integrated solution

The whole solution
Step 1:
vs code extension � Squash server creates a
debug config (service & image) and waits for the
debug session to connect.

Step 2:
envoy gets a curl request with squash header

Step 3:
� envoy asks Squash server to debug itself
(namespace & pod) and waits for the debug session.

1

2

3
4

5

The whole solution
1

2

3
4

5

Step 4:
Squash server � Squash client

Squash client � container runtime interface (to obtain the
container host pid)

Squash client � runs the debugger, attaches it to the
process in the container, and sets the application breakpoints

Squash client � returns debug session.

Step 5:
vs code extension � connects to the
debug server & transfers control to the
native debug extension.
envoy resumes traffic to the app

Envoy plugin
Envoy::Http::FilterHeadersStatus
SquashFilter::decodeHeaders(Envoy::Http::HeaderMap& headers, bool) {

if (squash_cluster_name_.empty()) {
ENVOY_LOG(warn, "Squash: cluster not configured. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;
}

// check for squash header
const Envoy::Http::HeaderEntry* squasheader =
headers.get(Envoy::Http::LowerCaseString("x-squash-debug"));

if (squasheader == nullptr) {
ENVOY_LOG(warn, "Squash: no squash header. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;
}

// get pod and container name
const char* podc = std::getenv("POD_NAME");
if (podc == nullptr) {
ENVOY_LOG(warn, "Squash: no podc. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;
}
std::string pod(podc);
if (pod.empty()) {
ENVOY_LOG(warn, "Squash: no pod string. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;
}

const char* podnamespacec = std::getenv("POD_NAMESPACE");
if (podnamespacec == nullptr) {
ENVOY_LOG(warn, "Squash: no podnamespacec. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;
}
std::string podnamespace(podnamespacec);
if (podnamespace.empty()) {
ENVOY_LOG(warn, "Squash: no container string. ignoring.");
return Envoy::Http::FilterHeadersStatus::Continue;
}

ENVOY_LOG(info, "Squash:we need to squash something");

// get squash service cluster object
// async client to create debug config at squash server
// when it is done, issue a request and check if it is attached.
// retry until it is. or until we timeout
// continue decoding.
Envoy::Http::MessagePtr request(new Envoy::Http::RequestMessageImpl());
request->headers().insertContentType().value(std::string("application/json"));
request->headers().insertPath().value(std::string("/api/v2/debugattachment"));
request->headers().insertHost().value(std::string("squash-server"));
request->headers().insertMethod().value(std::string("POST"));
std::string body = "{\"spec\":{\"attachment\":{\"pod\":\"" + pod + "\",\"namespace\":\"" +
podnamespace + "\"}, \"match_request\":true}}";
request->body().reset(new Envoy::Buffer::OwnedImpl(body));

state_ = CREATE_CONFIG;
in_flight_request_ =
cm_.httpAsyncClientForCluster(squash_cluster_name_).send(std::move(request), *this,
timeout_);

return Envoy::Http::FilterHeadersStatus::StopIteration;
}

only be added if squash server install &
not in squash pods – configuration in pilot

Istio – envoy leverage

Debug in production without pausing
the cluster!

• Pilot support for envoy plugins – today hardcoded (Envoy
plugin extension without recompile

- We will work with it with envoy and istio team and
contribute the code upstream

Service Mesh Demo

Future ideas
§ Can automate by leveraging similar mechanism of

envoy retries:
- on getting response of 500 (internal errors) run the
request with squash header.

• Integration with github

• Web browser IDE

• Integration with OpenTracing

• Detect latency and zoom in the debug

Check Squash out: github.com/solo-io/squash

