
@mrgcastle @cj_cullen

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

Security in Kubernetes

• Community is working hard on security controls
• Lots of defensive options, where to start?
• How to prioritize?
• Can’t cover all security best practices
• Today’s focus:

• Helping prevent attacks with existing controls
• Cluster admin + developer tasks
• Kubernetes (see blogpost for GKE)

• Documentation has the how
• Takeaway: what, why, and priority

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

The application code is owned

• K8s threat model assumes app
compromise

• Bugs happen
• After code exec is interesting
• Goal: Secure by default, often opt-in
first for backwards compat

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

Demos…tharr be 3!

Attacker lands in clusters at different stages of security evolution

Crawl: App owned == cluster compromise

Walk: App owned + breakout + priv esc == kubelet powers

Run: App owned, no easy escalations: propagate?

Skipper shipper Pirate pew-pew

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

PyramidSchemeCorp BadSweepstakesApp

• $50 lifetime membership!

• Every 5th member triggers a
$100 giveaway!

• Join now or get left behind!

• Get paid in bitcoin?

Bȵɗ$˯ɛɛʽˆ˔ȵʋɛˆAʽʽ

PyramidSchemeCorp

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

PyramidSchemeCorp BadSweepstakesApp

signup-form
• New member webpage
• Stores info in db

payment-processor
• Charges new members
• Pays winners
• Calls 3rd party API

admin-portal
• Admins grant refunds,

pay bribes...

$

Members
Corp k8s cluster

signup
form

db

payment
processor

Payment API
$

admin
portal

Corp
Admins

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

App compromise ==
cluster compromise

Security evolution level: crawl

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

#1 What happened?

Corp k8s cluster

signup
form

db

payment
processor

Payment API
$

admin
portal

Corp
Admins$

Helping prevent app compromise ➡
cluster compromise

Enable RBAC (disable ABAC), default on GKE
for 1.8+.

Service accounts no privileges by default.
System controllers are least privilege.

Kubernetes 1.6+: start API server with
--authorization-mode=RBAC

GKE 1.6+: gcloud container clusters
create mycluster
--no-enable-legacy-authorization

Use namespaces as boundaries.
Payments/frontend different privilege domains.
Critical if service account needs API privileges.

kubectl create namespace payments
kubectl -n payments run
--image=payments

Force attacker to stay inside the cluster by
firewalling access to the master.
Makes detecting and evicting attackers easier.

GKE (all versions): gcloud container
clusters update mycluster
--enable-master-authorized-networks
--master-authorized-networks=8.8.8.0/2
4

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

Root on node ==
kubelet powers

Security evolution level: walk

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

#2 What happened?

Corp k8s cluster

signup
form

db

payment
processor

Payment API
$

admin
portal

Corp
Admins$

Helping defend against root on node
Limit local escalation
No root
Careful with hostpath mounts
Enforce cluster-wide w/ PodSecurityPolicy (1.8+)
Minimal containers (not fat OS)

Create PodTemplate with:
securityContext:
 runAsUser: 2000
 allowPrivilegeEscalation: false

Ensure least privilege for nodes:
Enable Node Authorizer/Admission on 1.7+ to
protect secrets

K8s (1.7+): Start kube-apiserver with:
--authorization-mode=Node,RBAC
--admission-control=...,NodeRestriction

GKE (1.7+): automatically enabled

Separate sensitive workloads with
anti-affinity, taints, tolerations (1.4+)

podAntiAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 - labelSelector:
 matchExpressions:
 - key: app
 operator: In
 values:
 - signup
 topologyKey: kubernetes.io/hostname

Kubelet client cert rotation
Force attacker to maintain presence, limit time.

K8s 1.8 beta: Start kubelet with:
--rotate-certificates
GKE: Coming Q1 2018

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

No easy escalations...

Propagate?

Security evolution level: run

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

#3 What happened?

Corp k8s cluster

signup
form

db

payment
processor

Payment API
$

admin
portal

Corp
Admins$

Make propagation harder
NetworkPolicy (1.7+)

Microservices = natural boundaries

Ingress: Only admin-portal ➡ payments API

Egress: Need other services? Internet? No ➡
block it off

Istio authz also an option for services

kind: NetworkPolicy
...
 podSelector:
 matchLabels:
 app: "payment"
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: "admin-portal"

Enforce authn/authz on kubelet (1.5+)

Access to kubelet port ➡ execute inside
any container.

See docs goo.gl/XumrAd

GKE: enabled by default

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

Summary: Helping prevent
attacks

Update: Keep up with K8s releases, enable RBAC

Minimal Containers: Small container OS, no root, no
hostpath/network

Segregation: Namespaces, dedicated nodes, network
policies

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

Get involved

• Great security engineer expertise at sig-auth
• Help us make future production of the world rock solid
• Meet Wednesdays every 2 weeks: goo.gl/7DzJJY

• Google Kubernetes/GKE security team is hiring in Seattle :)

https://goo.gl/7DzJJY

@mrgcastle, @cj_cullen: Shipping in pirate-infested waters

Links
• GKE hardening 1.8 blogpost: goo.gl/88Nzbk
• Securing a cluster k8s doc: goo.gl/Qmhsw9
• Using RBAC: goo.gl/XkuEuU, RBAC on GKE: goo.gl/o1BkQf
• audit2rbac for semi-automated RBAC policy generation: goo.gl/d3W5h2
• Using namespaces to separate privileges: goo.gl/SHi3w1
• GKE master firewall: goo.gl/ZVRJzf
• PodSecurityPolicy: goo.gl/J5kmVL
• Anti-affinity: goo.gl/BzYbFk, taints/tolerations: goo.gl/HTQcBf
• Node authorizer: goo.gl/12J2U2
• Kubelet client cert rotation: goo.gl/yQ3rP7
• Network policy: goo.gl/1cjtgx (also see ahmetb’s talk: goo.gl/PdLwE6)
• Kubelet authn/z: goo.gl/XumrAd

• Security features roadmap: see Jordan Liggitt’s Sig Auth Update talk
• Sig-auth meeting: goo.gl/7DzJJY

• Metasploit (used in demos) is available under a BSD license:
github.com/rapid7/metasploit-framework

https://goo.gl/88Nzbk
https://goo.gl/Qmhsw9
https://goo.gl/XkuEuU
https://goo.gl/o1BkQf
https://goo.gl/d3W5h2
https://goo.gl/SHi3w1
https://goo.gl/ZVRJzf
https://goo.gl/J5kmVL
https://goo.gl/BzYbFk
https://goo.gl/HTQcBf
https://goo.gl/12J2U2
https://goo.gl/yQ3rP7
https://goo.gl/1cjtgx
https://goo.gl/PdLwE6
http://goo.gl/XumrAd
http://goo.gl/7DzJJY
https://github.com/rapid7/metasploit-framework

