Queueing Theory, In Practice

Performance Modelling in Cloud-Native Territory
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(come talk to me afterwards about tracing, events,

observability for distributed systems. . .)
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Lemma 2 (Serial Fraction). The serial fraction (2.1) can be expressed in terms of M{M[f1/{p
meirics by the identity [6, 10, 11]:

5 Ifl as 5 — ), £ = const.,

g = g (10
S+ 2 11 as &£ — 0, § = const. g

If o = 0, then there is no communication between processors and the interconnect latency there-
fore vanishes (mazimal evecution time). Conversely, if ¢ = 1, then the erecution time vanishes
(marimal communication latency).

Proof. The RTT for a single (unpartitioned) task in Fig. 2 is S5+ Z. The RTT for a p
equipartitioned subtasks is Tp = p(8/p) + Z/p. From defi corresponding speedup is
S+2

S+ Z/p (an

Sp =

Equating (11) with (1), we find
S=o and Z=(l-a)T1. (12)

Eliminating T} produces



What target utilization is appropriate for our service?

If we double available concurrency, will capacity double?
How much speedup do we expect from parallelizing queries?

Is it worth it for us to spend time on performance optimization?



Queueing theory gives us a vocabulary and a toolkit to

approximate software systems with models
reason about their behavior
interpret data we collect

understand our systems better.



l.  Modelling serial systems
Building and applying a simple model
Il.  Modelling parallel systems

Load balancing and the Universal Scalability Law

lll. Takeaways



Any model is reductive, and worthless without real data!

Production data and experiments are still essential.



Any model is reductive, and worthless without real data!
Production data and experiments are still essential.

But having a model is key to interpreting that data:

“Service latency starts increasing measurably at 50% utilization. Is that expected?”

“This benchmark uses fixed-size payloads, but our production workloads are variable.
Does that matter?”

“This change increases throughput, but makes latency less consistent.
Is that a good tradeoff for us?”



. Serial Systems




The Honeycomb API service
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Question: How do we allocate appropriate resources for this service?
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Question: How do we allocate appropriate resources for this service?
—Guesswork

Production-scale load testing
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—Production-seatetoad-testing (yes! but time-consuming)



The Honeycomb API service

load e
- Receives data from customers balancer : AP :
. —»
- Highly concurrent | |
clients - e storage pipeline
- Mostly CPU-bound | I/
O | | /7%,
- Low-latency = %,
] L *
| I
L — — — 1
Question: How do we allocate appropriate resources for this service?
—GHessSwork

—Production-scatetoad-testing (yes! but time-consuming)

- Small experiments plus modelling



Question: What’s the maximal single-core throughput of this service?
- Simulate requests arriving uniformly at random

- Measure latency at different levels of throughput
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Can we find a model that predicts this behavior?
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queue

,k current task
4 \’—%

Step 1: identify the question
- The busier the server is, the longer tasks have to wait before being completed.

- How much longer as a function of throughput?



queue

,k current task
/ \’—%

Step 2: identify assumptions about our system
- Tasks arrive independently and randomly at an average rate A.
- The server takes a constant time S, the service time, to process each task.

- The server processes one task at a time.



Step 3: gnarly math

Here are the full balance equations:

State Balance equation Simplified equation
0: TpA = MU =M =—Tp
1
A2
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‘We check that this is correct by substituting back into the balance equation for state i,

as follows:
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Therefore, substiiting back: into the equation for 7 we obtain

Q) () -sen

mpp=1——=1-—p

A
1
where p = A/u is the server utilization. It should make sense that 1, the probability that
the system is idle, equals 1 —p.

Observe that the condition o < 1 must be met if the system is to be stable in the sense

that the number of customers in the system does not grow without bound. For this
condifion to be true, we must have A < p.

The mean number of customers in the system can be derived by conditoning on the
state:
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Step 3: gnarly-math draw a picture of the system over time!

At any given time, how much unfinished work is at the server?

outstanding work
A

task arrives!

» time




Step 3: gnarly-math draw a picture of the system over time!

At any given time, how much unfinished work is at the server?

If throughput is low, tasks almost never have to queue: they can be served

immediately.

outstanding work
A

task arrives! another task arrives!

L» time




But as throughput increases, tasks may have to wait!

outstanding work
A

new task! another task arrives!

it has to wait until here

> time




But as throughput increases, tasks may have to wait!
Remember, we care about average wait time.
Two ways to find average wait time in this graph:

1. Average width of blue parallelograms.

4 task arrives, waits

'

wait finished

task done

time

\—r_l

wait time



But as throughput increases, tasks may have to wait!
Remember, we care about average wait time.

Two ways to find average wait time in this graph:

1. Average width of blue parallelograms.

2. Average height of graph. A e e it

we showed up here

time



But as throughput increases, tasks may have to wait!
Remember, we care about average wait time.

Two ways to find average wait time in this graph:

1. Average width of blue parallelograms.

2. Average height of graph. N

|dea: relate them using area under graph,

then solve for wait time!

how long we'd wait if
we showed up here

time




Over a long time interval T:

(area under graph) (width) * (avg height of graph)
= T * (avg wait time)

=T % W

time

~

timespan T



For each task, there’s:
- onetriangle

- one parallelogram (might have width 0).

(area under graph)

= (number of tasks) * [(triangle area) + (avg parallelogram area)]

A

S|

W, on average

time

N

AT tasks
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(area under graph)
= (number of tasks) * [(triangle area) + (avg parallelogram area)]
= (number of tasks) * [S? / 2 + S % W]

W, on average

S|

time

~

AT tasks



(area under graph)
= (number of tasks) * [(triangle area) + (avg parallelogram area)]
= (number of tasks) * [S? / 2 + S % W]

= (arrival rate * timespan) * [S? / 2 + S % W]

W, on average

S|

time

N

AT tasks



(area under graph)
= (number of tasks) * [(triangle area) + (avg parallelogram area)]
= (number of tasks) * [S? / 2 + S % W]
= (arrival rate * timespan) * [S? / 2 + S % W]
= AT * (S2 / 2 + S % W)

W, on average

S|

time

N
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(area under graph)
= (number of tasks) * [(triangle area) + (avg parallelogram area)]
= (number of tasks) * [S? / 2 + S % W]
= (arrival rate * timespan) * [S? / 2 + S % W]
= AT * (S2 / 2 + S % W)

W, on average
Before, we had: :

(area under graph) =T * W S{

time

N

AT tasks



So:

avg height =
(area under graph) wait time W

= T W

AT * (S * W+ S2 / 2)

time

Solving for W:

W, on average

A2
(1— \S)

time

I/V:2

~

AT tasks



As the server becomes saturated, wait time grows without bound!

10 -

wait time

0.2 0.4 0.6 0.8 1.0
throughput (normalized)




As operators, we can roughly identify three utilization regimes:

10

oh shit

response time

hmm...
no problem!

0 | | | | |
0.2 0.4 0.6 0.8 1.0

utilization




Does this model apply in practice?
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Does this model apply in practice?
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Does this model apply in practice?
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Does this model apply in practice?
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1. In this type of system, improving service time helps a lot!



1. In this type of system, improving service time helps a lot!
Thought experiment:
1. cuttheservicetimeSin half

2. Double the throughput A

)\32 < now twice as small

(]_ _ )\S) < stays the same

V=3

Wait time still improves, even after you double throughput!



1. In this type of system, improving service time helps a lot!

response time
response time

| | | D I ! |
50 100 150 200 50 100 150 200
throughput throughput



2. Variability is bad!
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Task size distribution

avg wait time
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If we have uniform tasks at perfectly uniform intervals, there’s never any queueing.
The slowdown we see is entirely due to variability in arrivals.

If job sizes are variable too, things get even worse.
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2. Variability is bad!
If we have uniform tasks at perfectly uniform intervals, there’s never any queueing.
The slowdown we see is entirely due to variability in arrivals.

If job sizes are variable too, things get even worse.

As system designers, it behooves us to measure and minimize variability:
- batching
- fast preemption or timeouts
- client backpressure

- concurrency control



We don’t have one server, we have lots and lots!

What can we say about the performance of a fleet of servers?



[I. Parallel Systems




If we know that one server can handle T requests per second with some latency SLA,

do we need N servers to handle N * T requests per second?

\

- > N parallel servers
\. /




Well, it depends on how we assign incoming tasks!

to the least busy server

randomly
\
round-robin

- > N parallel servers
\. /




Instantaneous aueue lengths Cumulative latency distribution
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Instantaneous queue lengths Cumulative latency distribution
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Given 1 server at utilization p (say p=60%):

P(server is busy) = p

P(queueing) = P(all servers are busy) < p

P(queueing)

Given N servers at utilization p:

| |
L




If we have many servers, higher utilization gives us the same queueing probability.

To serve N times more traffic, we won’t need N times more servers.

response time

10

8

0.2 0.4 0.6 0.8 1.0
utilization



There’s just one problem:

We’re assuming optimal assignment of tasks to servers.
Optimal assignment is a coordination problem.

In real life, coordination is expensive.



We need some coordination mechanism!

(a load balancer, cluster scheduler, etc.)

Coordinator

B










If the assignment cost per task is a, then the time to process N tasks in parallel is

aN + S
And the throughput is S
N/ (aN + S) =~

8




If the assignment cost per task is a, then the time to process N tasks in parallel is
aN + S

And the throughput is
N/ (aN + S) ==

N
— S+anN a

8

max throughput

20 40 60 20 100
parallelism N



max throughput

If the assignment cost per task is a, then the throughput is

N / (aN + S)

If the assignment cost per task depends on N, say Np3+a, then the throughput is

N / (BNz + aN + S)

N
- S4+aN
N
—  S+alN+3N?

20 40 60 80 100
parallelism N

S

——

~

>N




This is one example of the Universal Scalability Law in action.

500
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parallelism N



Making scale-invariant design decisions is hard:
- at low parallelism, coordination makes latency more predictable.

- at high parallelism, coordination degrades throughput.



Making scale-invariant design decisions is hard:
- atlow parallelism, coordination makes latency more predictable.
- at high parallelism, coordination degrades throughput.

Can we find strategies to balance the two?



Idea 1: Approximate optimal assignment

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL 12, NO. 10, OCTOBER 2001

The Power of Two Choices in
Randomized Load Balancing
Michael Mitzenmacher, Member, IEEE

Abstract—\We consider the following natural model: Customers arrive as a Poisson stream of rale An, A < 1, al a collection of
n servers. Each cuslomer chooses some constant J servers independently and uniformly at random from the n servers and waits
for sarvice at the one with the fewesi customers. Customers are served according to the first-in first-out (FIFO) protocol and the service
time for a customer ks exponentially distributed with mean 1. We call this problem the supermarkeat model We wish to know how the
systam behaves and in particular we are interested in the effect that the paramater J has on expected time a customer spends in the
system in equilibrium. Our approach uses a limiting, deterministic model representing the behavior as n — ~ o approximate
the behavior of finite syslems. The analysis of the deterministic model is interesting in its own right. Along with a theoretical
justification of this approach, wea provide simulations that demonstrate that the method accurately predicts system behavior, even
for relatively small systems. Our analysis provides surprising implications: Having J = 2 cholces leads to exponential improvements
in the expected time a customer spends in the system over d = 1, whereas having d = 3 cholces Is only a constant factor better than
d = 2. We discuss the possible implications for system design.

Indax Terms—Load balancing, gueuing theory, distributed systems, limiting systems, cholces.
+




Randomized approximation

|dea:
- finding best of N servers is expensive
- choosing one randomly is bad

- pick 2 atrandom and then use the better one.
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Randomized approximation
ldea:
- finding best of N servers is expensive

- choosing one randomly is bad

- pick 2 at random and then use the better one

Wins:

- constant overhead for all N

- improves instantaneous max load

from 0(log N) to O(log log N)



Randomized approximation
ldea:
- finding best of N servers is expensive

- choosing one randomly is bad

- pick 2 at random and then use the better one

Wins:

- constant overhead for all N

- improves instantaneous max load
from 0(log N) to O(log log N)
which is baaaasically 0(1)



Sparrow:

(and Hashicorp’s Nomad)

- distributed, stateless scheduling

- low-latency scheduling for lots of

short tasks
- uses two-random-choices

(plus optimizations)

Sparrow: Distributed, Low Latency Scheduling

Kay Ousterhout, Patrick Wendell, Matei Zaharia, lon Stoica
University of California, Berkeley

Abstract

Large-scale data analytics frameworks are shifting to-
wards shorter task durations and larger degrees of paral-
lelism to provide low latency. Scheduling highly parallel
jobs that complete in hundreds of milliseconds poses a
major challenge for task schedulers, which will need to
schedule millions of tasks per second on appropriate ma-
chines while offering millisecond-level latency and high
availability. We ate that a dec i Tan-
domized sampling approach provides near-optimal per-
formance while avoiding the throughput and availability
limitations of a centralized design. We implement and
deploy our scheduler, Sparrow, on a 110-machine clus-
ter and demonstrate that Sparrow performs within 12%
of an ideal scheduler.

1 Introduction

Today’s data analytics clusters are running ever shorter
and higher-fanout jobs. Spurred by demand for lower-
latency interactive data processing, efforts in re-
search and industry alike have produced frameworks
(e.g.. Dremel [12]. Spark [26], Impala [11]) that stripe
work across thousands of machines or store data in
memory in order to analyze large volumes of data in
seconds, as shown in Figure 1. We expect this trend to
continue with a new generation of frameworks target-
ing snh=secnnd resnonse Hmes. Bringding resnnnss times

2010z Dremel query
2009: Hive | 2012: Impala query

2004:
MapReduce
2010 In-memory
Spark query

10 min, 10 see. 100 ms 1 ms

Figure 1: Data analytics frameworks can analyze
large volumes of data with ever lower latency.

Jobs composed of short, sub-second tasks present a
difficult scheduling challenge. These jobs arise not only
due to frameworks targeting low latency, but also as a
result of breaking long-running batch jobs into a large
number of short tasks, a technique that improves fair-
ness and mitigates stragglers [17]. When tasks run in
hundreds of milliseconds, scheduling decisions must be
made at very high throughput: a cluster ining ten
thousand 1G-core machines and running 100ms tasks
may require over 1 million scheduling decisions per
second. Scheduling must also be performed with low
latency: for 100ms tasks, scheduling delays (includ-
ing queueing delays) above tens of milliseconds repre-
sent intolerable overhead. Finally, as processing frame-
works approach interactive time-scales and are used in
customer-facing systems, high system availability be-
comes a requirement. These design requirements differ




Idea 2: Iterative partitioning
The Universal Scalability Law applies not just to task assignment, but to any parallel process!

Example: Facebook’s Scuba (and Honeycomb): fast distributed queries over columnar data.

aggregator node

leaf nodes



Iterative partitioning
The Universal Scalability Law applies not just to task assignment, but to any parallel process!

Example: Facebook’s Scuba (and Honeycomb): fast distributed queries over columnar data.

1. Leafnodesread datafrom disk, compute partial results

2. Aggregator node merges partial results aggregator node

Question: What level of fanout is optimal?
leaf nodes

J




Iterative partitioning
The Universal Scalability Law applies not just to task assignment, but to any parallel process!

Example: Facebook’s Scuba (and Honeycomb): fast distributed queries over columnar data.

1. Scantimeisproportionalto (1 / fanout):
T(scan) =S / N

2. Aggregation time is proportional to

aggregator node

number of partial results

T(agg) = N * B leaf nodes

J




T(scan) =S / N (gets better as N grows)
T(agg) =N=*§f (gets worse as N grows)
T(total) = N * B + S / N (at first gets better, then gets worse)

throughput ~ 1 / T(total)

=N/ (B * N2+ 9) aggregator node

leaf nodes
J




T(scan) =S / N (gets better as N grows)
T(agg) =N=*f (gets worse as N grows)
T(total) = N * B + S / N (at first gets better, then gets worse)
500
throughput ~ 1 / T(total) 400
=0
- Q
=N/ (B * N? +S) £ 300
Ezoo
[43)
£

100 +

20 40 60 80 100
parallelism N



|ldea: multi-level query fanout
Throughput gets worse for large fanout, so:
- make fanout at each node a constant

- add intermediate aggregators

root aggregator node

intermediate aggregators

leaf nodes



|ldea: multi-level query fanout

add intermediate aggregators, make fanout a constant f

T(total) = S / N + (height of tree) » f * B
S/ N+ 1log(N) / f*f xp

S/ N + log(N) B -

aggregator node

height = log (N) / f<

leaf nodes




before: T(total) =S / N+ N * B
now: T(total) =S / N + log(N) * B

200
N

400 ——  S+aN+3Nlog(N)

J.r\;r
——  S+aN+3N?

(@]
e
o

Result: better scaling!

max throughput
[}
=

100

U L i I L i
20 40 60 80 100

parallelism N




Lessons:
Making scale-invariant design decisions is hard:
- atlow parallelism, coordination makes latency more predictable.

- at high parallelism, coordination degrades throughput.

But, smart compromises produce pretty good results!
- randomized choice: approximates best assignment cheaply
- iterative parallelization: amortizes aggregation / coordination cost

- USL helps quantify the effect of these choices!



[II. In Conclusion







Model building isn’t magic!

State goals and assumptions

Do we care most about throughput, or consistent latency?

How is concurrency managed?

V5
un
1

Are task sizes variable, or constant?

Don’t be afraid!
Not just scary math
Draw a picture

Write a simulation

mean latency (ms)
= = N N w
O U o u o
T T T T T

i
T

throughput (requests / sec)



Modelling latency versus throughput

Measure and minimize variability

Beware unbounded queues

1.0
0.8}
0.6+

0.4F

-

0.2

0.0

Task size distribution

avg wait time
3

The best way to have more capacity is to do less work

30 -




Modelling Scalability

Coordination is expensive

Express its costs with the Universal Scalability Law

Consider randomized approximation and iterative partitioning
500

max throughput

W

o

o
T

o
e
o

[}
o
o

100 +

N
S4+alV
N
—  S4+aN+gN?

0 20 40 60 80 100

parallelism N




Thank you!

@_emfree_
honeycomb.io

Special thanks to Rachel
Perkins, Emily Nakashima,
Rachel Fong and Kavya Joshi!
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