
Kubernetes in the Datacenter
Squarespace’s Journey Towards Self-Service Infrastructure

Kevin Lynch
klynch@squarespace.com

Microservices: A Story of Growth

Monolith

Background Jobs

DBQueue

2013: <50 engineers
● “Whatever works”
● Build product
● Grow fast

Microservices: A Story of Growth

2014: ~75 engineers
● “Whatever works”
● Too much firefighting
● Not enough new features
● Microservices FTW!

Monolith

Background Jobs

DBQueue

Microservices: A Story of Growth

Monolith

Background Jobs

DBQueue

2016: 100+ engineers
● Scalable + Reliable
● Developers can move faster
● Squarespace can move faster

Traditional Provisioning Process

Manual

Find Resources
(CPU, RAM, Disk)

Find IP

Configure VLAN

Configure Firewall

Update Ansible
Inventory

DNS Updates

PXE Boot

Install OS

Configure OS

Install App
Dependencies

Install App!

Configure
Monitoring

Containerization & Kubernetes Orchestration

● Difficult to find resources
● Slow to provision and scale
● Shoehorning “Cattle” into “Pets” mentality
● System was too complex for new engineers

Static infrastructure and microservices do not mix!

2017: 200+ engineers
● Self-Service Infrastructure
● Operations can move faster
● Squarespace can move faster

Microservices: A Story of Growth

Compute Network

StorageMetrics

Self-Service Compute

kubectl apply -f app.yaml

Compute

● Java Spring Boot
● FluentD

○ Logging
● Consul

○ Service Discovery
○ K/V

Self-Service Compute

Compute

resources:
 requests:
 cpu: 2
 memory: 4Gi
 limits:
 cpu: 2
 memory: 4Gi

Pod

Java Service

fluentd consul

Self-Service Compute

● CGroup assigned to each pod

● Completely Fair Scheduler (CFS)
○ Schedules a task based on CPU Shares
○ Throttles a task once it hits CPU Quota

● OOM Killed when memory limit exceeded

Compute

resources:
 requests:
 cpu: 2
 memory: 4Gi
 limits:
 cpu: 2
 memory: 4Gi

Self-Service Compute

● Shares = CPU Request * 1024
● Total Kubernetes Shares = # Cores * 1024
● Quota = CPU Limit * 100ms
● Period = 100ms

Compute

resources:
 requests:
 cpu: 2
 memory: 4Gi
 limits:
 cpu: 2
 memory: 4Gi

Self-Service Compute

● Shares = 2048
● Total Kubernetes Shares = 65536
● Quota = 200ms
● Period = 100ms

Compute

resources:
 requests:
 cpu: 2
 memory: 4Gi
 limits:
 cpu: 2
 memory: 4Gi

Self-Service Compute

● GC Threads were using up most of the CPU Quota
○ 64 GC Threads
○ 128 Jetty Threads
○ 64 ForkJoin Threads

Compute

Self-Service Compute

● Libraries call Runtime.getRuntime.availableProcessors()
○ Jetty
○ ForkJoinPool
○ GC Threads
○ ???

● JVM detects cores via sysconf(_SC_NPROCESSORS_ONLN)
● CGroups does not limit _SC_NPROCESSORS_ONLN

Compute

Self-Service Compute

● Provide a base Java container to calculate resources

● Detect maximum # of “cores” assigned
○ /sys/fs/cgroup/cpu/cpu.cfs_quota_us divided by

/sys/fs/cgroup/cpu/cpu.cfs_period_us

● Automatically tune the JVM
○ -XX:ParallelGCThreads=${core_limit}
○ -XX:ConcGCThreads=${core_limit}
○ -Djava.util.concurrent.ForkJoinPool.common.parallelism=${core_limit

}

Compute

Self-Service Compute

● Use Linux LD_PRELOAD to override availableProcessors()

#include <stdlib.h>
#include <unistd.h>

int JVM_ActiveProcessorCount(void) {
 char* val = getenv("CONTAINER_CORE_LIMIT");
 return val != NULL ? atoi(val) : sysconf(_SC_NPROCESSORS_ONLN);
}

https://engineering.squarespace.com/blog/2017/understanding-linux-container-scheduling

Compute

https://engineering.squarespace.com/blog/2017/understanding-linux-container-scheduling

● Java Spring Boot
● Netflix Ribbon

○ Automatic Retries
○ Client Side Load Balancing

● Netflix Hystrix
○ Circuit Breaking

● Consul
○ Service Discovery

Self-Service Networking

Network

VM

Java Service

fluentd consul

Self-Service Networking

Network

VM

Service

fluentd consul

Pod

Service

fluentd consul

Kubernetes Networking

● Kubernetes CNI (Container Network Interface) is pluggable
● Different plugins for different network topologies

○ Flannel
○ Calico
○ Weave
○ Kubenet
○ VXLan

Network

Calico Networking

● Project Calico
● No network overlay required!

○ No MTU issues
○ No performance impact
○ No ingress/egress issues

● Communicates directly with existing Layer 3 network
● BGP Peering with Top of Rack switch

Network

Spine and Leaf Layer 3 Clos Topology

● Simple to understand
● Easy to scale
● Predictable and consistent latency (hops = 2)
● Anycast support

Leaf Leaf Leaf Leaf

Spine Spine Network

Spine and Leaf Layer 3 Clos Topology

● All work is performed at the leaf/ToR switch
● Each leaf switch is separate Layer 3 domain
● Each leaf is a separate BGP domain (ASN)
● No Spanning Tree Protocol issues seen in L2 networks (convergence

time, loops)

Leaf Leaf Leaf Leaf

Spine Spine Network

Spine and Leaf Layer 3 Clos Topology

Leaf Leaf Leaf Leaf

Spine Spine

10.0.1/24 10.0.2/24 10.0.3/24 10.0.4/24

Network

Spine and Leaf Layer 3 Clos Topology

Leaf Leaf Leaf Leaf

Spine Spine

Anycast Anycast Anycast Anycast

Network

Spine and Leaf Layer 3 Clos Topology

Leaf Leaf Leaf Leaf

Spine Spine Network

Kubernetes Networking

Network

Kubernetes Masters Kubernetes Nodes

Leaf

Calico-Node
Agent

Pods
Pods

Pods

Calico-Node
Agent

Kubernetes Networking

Network

Kubernetes Masters Kubernetes Nodes

Leaf

Calico-Node
Agent

Pods
Pods

Pods

Calico-Node
Agent

Service IP Range

Pod IPs

Service IP Range

Pod IPs

Kubernetes Networking

Network

Kubernetes Masters Kubernetes Nodes

Leaf

Calico-Node
Agent

Pods
Pods

Pods

Calico-Node
Agent

Service IP Range

Pod IPs

Service IP Range

Pod IPs

API Server IP

API Server

● Inefficient aggregations
● Loss of precision
● Ephemeral instances are expensive
● How much is too much?

○ Combinatoric Explosion

Self-Service Metrics

VM

Application

CollectD

Metrics

Self-Service Metrics

● Host based alerting
○ App and system tightly coupled

● Difficult to route alerts
○ Application?
○ System?
○ Hypervisor?

● Difficult to create alerts on SLAs
○ Confusing to create
○ Expensive queries

VM

Application

CollectD

Sensu Client

Metrics

Self-Service Metrics

● Automatic discovery
● No loss of precision
● Arbitrary time intervals
● Stores tagged data

○ Service
○ Pod
○ Endpoint

● Efficient for ephemeral instances VM

Metrics

Pod

VM

Pod

VM

Pod

Prometheus Operator

Metrics

Team A
Prometheus

Prometheus
Operator

Team B
Prometheus

Prometheus Operator

Metrics

Team A
Prometheus

Prometheus
Operator

Team B
Prometheus

A1 A2 B1 B2

Prometheus Operator

Metrics

Team A
Prometheus

Prometheus
Operator

Team B
Prometheus

AlertManager

A1 A2 B1 B2

Prometheus Operator

Metrics

Team A
Prometheus

Prometheus
Operator

Team B
Prometheus

AlertManager

A1 A2 B1 B2

A1 Alerts

A2 Alerts

B1 Alerts

B2 Alerts

Prometheus Operator

Metrics

Team A
Prometheus

Prometheus
Operator

Team B
Prometheus

AlertManager

A1 A2 B1 B2

A1 Alerts

A2 Alerts

B1 Alerts

B2 Alerts

ALERT A1ErrorRate
 IF rate(responseCodes{service="A1", code=”500”}[5m]) >
0
 FOR 1m
 LABELS {severity="critical", team="A"}

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

Storage

● Multiple Access Patterns
○ Block
○ Shared
○ Object

● Simple to scale
● Commodity hardware
● Automatic replication
● Independent of Kubernetes

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

RBD Provisioner
Pod

Storage

Default
StorageClass

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

RBD Provisioner
Pod

StatefulSet
Pod

PVC

Storage

Default
StorageClass

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

RBD Provisioner
Pod

StatefulSet
Pod

PVC

Storage

Default
StorageClass

ReadWriteOnce
PV

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

RBD Provisioner
PodPVC

Storage

Default
StorageClass

ReadWriteOnce
PV

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

CephFS
Provisioner Pod

Service Pod

PVC

Storage

Shared
StorageClass

Shared PV

Service Pod

Self Service Storage

StorageStorage

Block
RBD

Shared
CephFS

Storage

Object
RADOS

Service
Pod

Storage

● 20+ new services planned for Q1
● True “micro” services

○ Small
○ Experimental

● VM services migrated quickly

Compute Network

StorageMetrics

QUESTIONS?
Thank you!

squarespace.com/careers

Kevin Lynch
klynch@squarespace.com

