
Kafka-Operator:
Managing and Operating Kafka Clusters in
Kubernetes
Nenad Bogojević, Solution Architect, Amadeus

About Me & Amadeus

• provides IT services for travel industry
• 30 years

• Runs kubernetes deployments almost since inception
• In own premises, in public clouds

• Me: Nenad Bogojević
• Solution architect involved in design of new platform and migrating

existing applications

Amadeus uses Kafka

• For log & events collection
• Installed with puppet

• For streaming platform

What is Kafka?

• Streaming platform
• cluster of servers called brokers.

• stores streams of records in topics.

• records stored in partitioned log
across brokers

• partitions replicated across brokers

• records generated by producers and
read by consumers (clients)

Kafka in Kubernetes?

• Kafka cluster
• Each broker has identity – need to find each other

• Brokers need persistence to store partition logs

• Zookeeper cluster
• Another cluster with persistence

• StatefulSet

broker-178523330-61d6n

StatefulSet refresher

• Provide stable pod identity

• Provide stable storage

• Ordered startup, shutdown

• Rolling updates

pod-0 pod-1 pod-2

some-domain

pod-0.some-domain.default.svc

Kafka and Zookeeper StatefulSet

kafka-0 kafka-1 kafka-2 zoo-0 zoo-1 zoo-2

broker zooHeadless
service

Kafka and Zookeeper StatefulSet

kafka-0 kafka-1 kafka-2 zoo-0 zoo-1 zoo-2

kafka zookeeper

broker zooHeadless
service

Discovery
service clients

use this

to discover these

Containers, Charts & Co

• Containers
• https://github.com/Yolean/kubernetes-kafka

• Charts & co
• https://github.com/kubernetes/contrib/tree/master/statefulsets/kafka

• https://github.com/EnMasseProject/barnabas

• https://github.com/nbogojevic/kubernetes-kafka

• Operators:
• https://github.com/krallistic/kafka-operator

• https://github.com/nbogojevic/kafka-operator

https://github.com/Yolean/kubernetes-kafka
https://github.com/kubernetes/contrib/tree/master/statefulsets/kafka
https://github.com/EnMasseProject/barnabas
https://github.com/nbogojevic/kubernetes-kafka
https://github.com/krallistic/kafka-operator
https://github.com/nbogojevic/kafka-operator

Demo time

Affinity

• Node selectors
• Using node selector to land instances

on machines with good hardware (e.g.
SSD).

• Anti-affinity
• Using anti affinity to spread instances

across different physical machines

nodeSelector:
...
disk: fast

affinity:
podAntiAffinity:

preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1

podAffinityTerm:
labelSelector:

matchExpressions:
- key: app

operator: In
values:
- kafka-cluster

topologyKey: "kubernetes.io/hostname"

Storage

containers:
...
volumeMounts:
- name: datadir
mountPath: /opt/kafka/data

Is empty directory good idea?
volumes:
- name: datadir

emptyDir: {}

• If your pod restarts, it will get same emptyDir,
and recover data

• If pod moves to other node, it will lose data!

• Kafka performance is mostly disk bound
(network also)

• Kafka has replication!

StatefulSet

Persistence

• Common wisdom
• Use persistent volume, otherwise you’ll lose Kafka logs

• Relying on Kafka replication
• Use empty volume

• if container crashes, you keep the logs

• if node crashes, rely on replication

• have enough replicas and brokers

• 5 broker cluster, 2 replicas – you can lose 1 broker

• Soon: local persistent volume

Monitoring (Kubernetes)

Checks that server is ready
readinessProbe:

exec:
command:
- bin/kafka-broker-api-versions.sh
- --bootstrap-server=localhost:9092

Checks that server accepts connection
livenessProbe:

tcpSocket:
port: 9092

StatefulSet

Monitoring (JMX and Prometheus)

template:
metadata:
annotations:

prometheus.io/scrape: "true"
prometheus.io/path: "/metrics"
prometheus.io/port: "9779"

kafka-container:

FROM fabric8/s2i-java
ADD kafka

9092

9779

8778

StatefulSet

Container

Operators

What are Operators?

• Transposing domain knowledge of SRE/operations into
executable code

• @Amadeus we use operators for
• Prometheus

• Redis cluster

• Workflow

• Kafka

Provisioning Clusters

• Helm charts/Openshift templates

• Once platform is set up, cluster stays in place

• We can scale up

• But scale down, evacuation and upgrades are tricky

How About Topics?

• Operating topics means
• Make sure that topic exists in target environments

• Make sure that topic is deleted once it is no longer used

• Propagate same configuration across environments

• Configure retention based on available disk space

• Configure clients with credentials

• Deliver configuration and requirements as code

Topics as a Code

• ConfigMap or CustomResource
describing

• Name

• Partition count

• Replication factor

• Topic properties

• Equivalent to provision/unprovision of
ServiceCatalog

apiVersion: v1
kind: ConfigMap
metadata:
name: sample-topic
labels:
config: kafka-topic

data:
partitions: "20"
replication-factor: "2"
properties: |
retention.ms=1000000

Topics – Access Control

• Deployments describe which topic they use via annotations

• Operator assigns user, generates java JAAS configuration,
creates secret

• Equivalent to bind/unbind of ServiceCatalog

labels:
app: kafka-client
kafka-operator: inject-credentials

annotations:
"topic.kafka.nb/consumes": "input-topic"
"topic.kafka.nb/produces": "output-topic"

Kafka Upgrades

• Inter broker protocol
• Set protocol version to current

• Upgrade brokers one by one

• Set protocol version to new

• Storage format
• Have consumers on up-to date version

• Update format version to new

• Easy way out: don’t upgrade, but re-create?

Performance

• Dominated by disk I/O – using SSD
• Then by network

• Almost never CPU or memory (2-4 VCPU, 2-4GB), half for JVM heap

• 100K messages/sec

• Getting zookeeper and brokers on same nodes reduces
network – same goes with clients ;)

Thanks!
K8S & Kafka, Pulse! tribe, and in particular Serge Beuzit, David Benque, Mathieu Bruyen, Laurent Cognard, Florent Coquelet, Pierre Dor, Yassine Ferkouche, Vincent Magry, Clement Seveillac, Stefano Troiani

