CNCon / KubeCon at North America

Fluentd and Distributed Logging

y Masahiro Nakagawa

1 CLOUD NATIVE P TREASL

T TREASURE
k== COMPUTING FOUNDATION DATA

L ogging and Containers

Logging on production

- Service Logs

Logs for Bussiness

KPI
Machine Learning

- Web access logs
-+ Ad logs

- Transcation logs (Game, EC, etc...)

Distributed tracing

- System Logs

+ Syslog, systemd and other logs Logs for Service

System monitoring

- Audit logs Root cause check

+ Metrics (CPU, memory, etc...)

The Container Era

Server Era Container Era

Microservices

Service Architecture Monolithic

System Image Mutable Immutable

Local Data Persistent Ephemeral

Physical addresses No fixed addresses

Log Collection syslogd / rsync ?

Logging challenges with Containers

- No permanent storage

» Transfer logs to anywhere ASAP

* No fixed physical addresses

» Push logs from containers

* No fixed mappings between servers and roles

» Label logs with Service/Tags

- Lots of application types

» Need to handle various logs

i Spratdee

RSN A
LR o'-.pt U.t.’

o

What’s Fluentd?

Buffering, HA (failover),
Secondary output, etc.

"JRELIABLE|DATA COLLECTION TOOL

Simple core Like syslogd in streaming manner
+ Variety of plugins

Log collection with traditional logrotate + rsync

Server A Server B Server C
Application Application Application
File File File File File File FiIe File File
_ _ _ _ _ _ _

ngh latency!!

Must wait for a day

Lon S Hard to analyze!!
0g server Complex text parsers

Streaming way with Fluentd

Server A Server B Server C
Application Application Application
— A [A A — A [AN [A — A [AN [A
File File File File File File File File File
_ _ _ _ _ _ _ _ _

Low latency!
Seconds or minutes

Log Server

Easy to analyze!!
Parsed and formatted

M x N problem for data integration

script to

parse data aggregation VN

script

Tweet- -
fetching aggregation Y=k
script script -

Cloud Platform

filtering

script to cron job for
parse data M loading

A solution: unified logging layer

=[a a[azlnj

elastic

‘e
5
5
5
5
.
.
.
.
.
.
.
.
.
.
.
.
5
5
5
«
.
5
«
.
.
.
.
.
.
.
.
.
.
e
v,

‘A

TRTYETETPTPPETPYEPEPPTEPEPRTEREPRT N =

TTTETTTYTETTRYPEETTPPPETTYYEITRPTTITY =

4
f) Google

Cloud Platform

.
N,
e
G
‘e
e
‘e
‘e
‘e
‘e
G
e
.
o te,
. G
. .
. .
. .
. .
. .
. .
. .
. .
. .
. .
. ‘e
- A
o*
.
»
h 4 *
™
* *
* *
- -
* »
o e
Ot .,
* »
* »
* »
* -
* »
o e
o .,
* *
o e
o .,
o e
o .,
o ‘e
»
0" *e N
o e
* »
o .,
»
04 »

Internal Architecture (simplified)

--
* *

ll
* *

2017-12-06 15115115 Time
myappbuy Tag
p——

“user’:’me”, ;

“path”: “/buyltem”, Record

“price”: 150,
“referer”; “/landing”

lll

Divide & Conquer for retry

Batch

Stream Error

HEEE X.-- ><.

Divide & Conquer for recovery

Buffer
(on-disk or in-memory)

3rd party input plugins

kafka

b

Tag,

3rd party output plugins

e

Blibrato.

ZABBIX

Architecture

Source (Container + Agent)

Transferring / Aggregation Layer

Destination (Storage / Database / Service)

Logging Workflow

* Retrieve logs: File / Network / API ...
| , * Parse payload for structured logging

* Get logs from multiple sources

Aggregator | |
~* Split/Merge logs into streams

* Recelve logs from Aggreagtors
Destination

o Store formatted logs

How to collect logs from containers
using Fluentd in source layer?

Text logging with --log-driver=fluentd

Server
Container {
“container_id”: “ad6d5d32576a”,
“container_name”: “myapp”,
“source”: stdout
STDOUT / STDERR Fluentd

docker run \

--log-driver=fluentd \
--log-opt \
fluentd-address=localhost:24224

Metrics collection with fluent-logger

Server
tag = app.events.purchase
Container {
“user_id”: 21,
“item_id”: 321
“value”: 1,

Fluentd

from fluent i1mport sender
from fluent import event

sender.setup('app.events', host="localhost')
event.Event('purchase', {
'user_1id': 21, "item_1d': 321, 'value': '1'

¥)

Shared data volume and tailing

Server

Container

| /mnt/nginx/\iogs | Cluentd

<source>
@type tail
path /mnt/nginx/logs/access.log
pos_file /var/log/fluentd/access.log.pos
<format>

@type nginx
</format>
tag nginx.access
</source>

Logging methods for each purpose

- Collecting log messages
- --log-driver=fluentd
- Application metrics
- fluent-logger
- Access logs, logs from middleware
- Shared data volume
- System metrics (CPU usage, Disk capacity, etc.)
- Fluentd’s input plugins (Fluentd pulls data periodically)

-+ Prometheus or other monitoring agent

Primitive deployment...

Container

Too many connections

Server 1 .
from many containers!

Container A elasticsearch

Application

_ Container
ontainer B .
Application .. é redis

Server 2 Container
Container C Kaf ka

Application
Container

ontainer D

- _FEmbedding destination

Application IPsin ALL Docker images

makes management hard

Source aggregation decouples config
from apps

Server 1

q
Container A Fluentd 4 "‘ elasticsearch

Application S, R

Container B

o .
.
-
0“ :
O .
.‘0 .
*
*
0’. I l '
g:'.. I e
% ‘e
5, ‘e,
% ‘e,
.. ',.
e .
.. .
% ‘e
PR f~
. * Yo,
. ., ..
R
.
- .
o* ' % .
o) .
. ‘I “
]] ““ - .
ICa IO I : k
I l . .
5 "‘
E 5
.
.
. .
. .
. .
. »
PR
.
PO
. *
v
)
D t- t. . I

localhost from app’s Container

Server 2 point of view A f

Container

Container

.)
Q .
. .
‘. o
. & +* .
n LR “‘ .
LN . -
LN *)
LN * .
MO o .
st - "
.
R)
k P03 .
ke .
L) .
*, .
’0‘)
.
., .
*)

Application RS N

Container D

Application

Destination aggregation makes storages scalable

for high traffic

Server 1

Container A

Application

Container B

Application

Server 2

Container C

Application

Container D

Application

Fluentd

Aggregation server(s)

v,
.
.
.
.
.
.
.
‘e
N

«*
.
.
.
.
.
.
.
.
.
R
.

active / standby /
load balancing

Fluentd

v,
.
.
.
.
.
3
5
5
‘e
.

Aggregation servers

- Logging directly from microservices makes log storages
overloaded.

- To0O many connections
- Too frequent import API calls

- Aggregation servers make the logging infrastracture
more reliable and scalable.

+Connection aggregation

- Buffering for less frequent import API calls
- Data persistency during downtime

- Automatic retry at recovery from downtime

No

Destination

Source side Aggregation

No

([[]

Yes

([[]
bl

side
Aggregation

Yes

([[]

e

\ 4

Should use these patterns?

+ Source-side aggregation: Yes

- Fluentd frees logging pain from applications
- Buffering, Retry, HA, etc...

- Application don’t need to care destination changes

- Destination-side aggregation: It depends
+good for high traffic
+ maybe, no need for cloud logging services

-+ may nheed for self-hosted distributed systems or
cloud services which charges per request

Scalable Distributed Logging

+ Network

- Split heavy traffic into traffics to nodes

-+ Merge connections

- CPU /Memory

- Distribute processing to nodes about heavy processing
- High Availability

- Switch / fallback from a node to another for failure

- Agility

- Avoid reconfiguring whole logging layer to modify
destinations

Fluentd) Container

- Fluentd model fits container based systems
+ Pluggable and Robust pipelines
- Support typical deployment patterns

- Smart CNCF products for scalable system
- k8s: Container orchestration
- Prometheus: Monitoring
- Fluentd: Logging
- JAEGER: Distributed Tracing
- etc...

Let’s make scalable and stable system!

Enjoy logging!

