
Fluentd and Distributed Logging

Masahiro Nakagawa  
Senior Software Engineer 　　

CNCon / KubeCon at North America

Logging and Containers

Logging on production
• Service Logs

• Web access logs
• Ad logs
• Transcation logs (Game, EC, etc…)

• System Logs
• Syslog, systemd and other logs
• Audit logs
• Metrics (CPU, memory, etc…)

Logs for Bussiness

Logs for Service

KPI
Machine Learning
…

System monitoring
Root cause check
…

Distributed tracing

The Container Era

Server Era Container Era

Service Architecture Monolithic Microservices

System Image Mutable Immutable

Local Data Persistent Ephemeral

Network Physical addresses No fixed addresses

Log Collection syslogd / rsync ?

• No permanent storage  
 

• No fixed physical addresses 
 

• No fixed mappings between servers and roles 
 

• Lots of application types

Logging challenges with Containers

Transfer logs to anywhere ASAP

Push logs from containers

Label logs with Service/Tags

Need to handle various logs

Fluentd overview

Simple core  
+ Variety of plugins

Buffering, HA (failover),
Secondary output, etc.

Like syslogd in streaming manner

AN EXTENSIBLE & RELIABLE DATA COLLECTION TOOL

What’s Fluentd?

Log collection with traditional logrotate + rsync

Log Server

Application

Server A

File FileFile

Hard to analyze!!

Complex text parsers

Application

Server C

File FileFile

Application

Server B

File FileFile

High latency!!

Must wait for a day

Streaming way with Fluentd

Log Server

Application

Server A

File FileFile

Application

Server C

File FileFile

Application

Server B

File FileFile

Low latency!

Seconds or minutes

Easy to analyze!!

Parsed and formatted

M x N problem for data integration

LOG

script to
parse data

cron job for
loading

filtering
script

syslog
script

Tweet-
fetching

script

aggregation
script

aggregation
script

script to
parse data

rsync
server

LOG

A solution: unified logging layer

M + N

Fluentd Architecture

Internal Architecture (simplified)

Plugin

Input Filter Buffer Output

Plugin Plugin Plugin

2017-12-06 15:15:15

myapp.buy

Time
Tag

Record

{

 “user”:”me”,

 “path”: “/buyItem”,

 “price”: 150,

 “referer”: “/landing” 
}

Retry

Error

Retry

Batch

Stream Error

Retry

Retry

Divide & Conquer for retry

Divide & Conquer for recovery
Buffer
(on-disk or in-memory)

Error

Overloaded!!

recovery

recovery + flow control

queued chunks

3rd party input plugins

dstat

df AMQL

munin
SQL

3rd party output plugins

Graphite

Distributed Logging

Architecture

Source (Container + Agent)

Transferring / Aggregation Layer

Destination (Storage / Database / Service)

Logging Workflow

Source

Aggregator

Destination

• Retrieve logs: File / Network / API …
• Parse payload for structured logging

• Get logs from multiple sources
• Split/Merge logs into streams

• Receive logs from Aggreagtors
• Store formatted logs

How to collect logs from containers 
using Fluentd in source layer?

Text logging with --log-driver=fluentd
Server

Container

App

FluentdSTDOUT / STDERR

docker run \
 --log-driver=fluentd \ 
 --log-opt \
 fluentd-address=localhost:24224

{

 “container_id”: “ad6d5d32576a”,

 “container_name”: “myapp”,

 “source”: stdout

}

Metrics collection with fluent-logger
Server

Container

App

Fluentd

from fluent import sender
from fluent import event

sender.setup('app.events', host='localhost')
event.Event('purchase', {
 'user_id': 21, 'item_id': 321, 'value': '1'
})

tag = app.events.purchase

{

 “user_id”: 21,

 “item_id”: 321

 “value”: 1,

}

fluent-logger library

Shared data volume and tailing
Server

Container

App

Fluentd

<source>
 @type tail
 path /mnt/nginx/logs/access.log
 pos_file /var/log/fluentd/access.log.pos
 <format>
 @type nginx
 </format>
 tag nginx.access
</source>

/mnt/nginx/logs

Logging methods for each purpose

• Collecting log messages
• --log-driver=fluentd

• Application metrics
• fluent-logger

• Access logs, logs from middleware
• Shared data volume

• System metrics (CPU usage, Disk capacity, etc.)
• Fluentd’s input plugins (Fluentd pulls data periodically)
• Prometheus or other monitoring agent

Deployment Patterns

Server 1

Container A
Application

Container B
Application

Server 2

Container C
Application

Container D
Application

Kafka

elasticsearch

HDFS

Container

Container

Container

Container

Primitive deployment…
Too many connections
from many containers!

Embedding destination
IPsin ALL Docker images  
makes management hard

Server 1

Container A
Application

Container B
Application

Fluentd

Server 2

Container C
Application

Container D
Application

Fluentd Kafka

elasticsearch

HDFS

Container

Container

Container

Container

Destination is always
localhost from app’s
point of view

Source aggregation decouples config
from apps

Server 1

Container A
Application

Container B
Application

Fluentd

Server 2

Container C
Application

Container D
Application

Fluentd

active / standby /
load balancing

Destination aggregation makes storages scalable
for high traffic

Aggregation server(s)

Aggregation servers
• Logging directly from microservices makes log storages

overloaded.
• Too many connections
• Too frequent import API calls

• Aggregation servers make the logging infrastracture
more reliable and scalable.

• Connection aggregation
• Buffering for less frequent import API calls
• Data persistency during downtime
• Automatic retry at recovery from downtime

Source side Aggregation

Destination  
side  

Aggregation

No Yes

No

Yes

Should use these patterns?

• Source-side aggregation: Yes
• Fluentd frees logging pain from applications

• Buffering, Retry, HA, etc…
• Application don’t need to care destination changes

• Destination-side aggregation: It depends
• good for high traffic
• maybe, no need for cloud logging services
• may need for self-hosted distributed systems or 

cloud services which charges per request

Scalable Distributed Logging

• Network
• Split heavy traffic into traffics to nodes
• Merge connections

• CPU / Memory
• Distribute processing to nodes about heavy processing

• High Availability
• Switch / fallback from a node to another for failure

• Agility
• Avoid reconfiguring whole logging layer to modify

destinations

Fluentd ♡ Container
• Fluentd model fits container based systems

• Pluggable and Robust pipelines
• Support typical deployment patterns

• Smart CNCF products for scalable system
• k8s: Container orchestration
• Prometheus: Monitoring
• Fluentd: Logging
• JAEGER: Distributed Tracing
• etc…

Let’s make scalable and stable system!

Enjoy logging!

