£2
W

KubeCon mnirmata

—— North America 2017 ——

Distributed Workflow
for Microservice-style Applications

Yun Qin, Software Engineer, Nirmata

yun@nirmata.com
RS ENAR RS SR RN NEEN IR RS R IS e

RLIAS DS ST LUTANRD 2

T RENE NS NNl RS TP

 State management

- Workflow Execution

,.

- Exrror handling

M nirmata

Image Credit: https://unsplash.com

https://unsplash.com/

S 4

The Workilow
Pattern makes life
easier

M nirmata

Image Credit: https://unsplash.com

https://unsplash.com/

About me

Yun Qin

-

kubernetes

ADMINISTRATOR

-

UCOmTIS e »

Software Engineer

Nirmata, Inc “ kuﬁe,
Apr 2017 - Present « 9 mos =l
San Francisco Bay Area

nirmata

Working on Nirmata cloud service, mainly focus on microservice based orchestrator managing and
deploying container applications

Senior Network Engineer

China Unicom
Nov 2007 - Jul 2015 - 7 yrs 9 mos
Shanghai City, China

M nirmata

Presentation Goal

To introduce the Distributed Workflow
pattern and its usage in
Microservices-style applications using
NirmataOSS workflow library

M nirmata
O

Microservice Architecture

Workflow Overview

Workflow Management on Microservices
NirmataOSS Workflow

Demo

Other solutions

M nirmata
O

Microservice Architecture

API| Gateway

Customer Order Payment
Service Service Service Service

Independent modular services
Communicate through well-defined mechanism (e.g. REST api)

M nirmata
O

Workflow Overview

Sequence of tasks Workflow A
. . Task1 Task2 Task3

Coordinated execution Placeorder || Paytheorder || Ship products

. . N | | | /
Different processing : : :

fit e i i i ™
enutes [Order Service } [Payment Service } [Shipping Service }

S Web Application/

M nirmata
O

Workflow Overview (Distributed)

[

Scheduling

|

/ AN
y /
4)
Workflow
Task1 R Task2 Task3
Place order Pay the order Ship product J/—/
N | | | y
i i i
/- i . .
[' I I
4 : : : A

_

[Order Service]

[Payment Service } [Shipping Service }

Web Application
/

multiple instances

multiple instances

M nirmata

Workflow Management with Microservices

Challenge Task1 Task2 Task3
Place order 5 Pay the order 5 Ship product
Tasks execution across
multi-services
Distributed asynchronized [Order m [Payment m [Shipping m
Service ; Service 5 Service
environment | ’

Dependencies between tasks

Complex logic handling

M nirmata
O

NirmataOSS Workflow

Open source lib http://nirmataoss.qgithub.io/workflow/

Java based

Apache ZooKeeper and Apache Curator based

Lightweight and easy to use

M nirmata

http://nirmataoss.github.io/workflow/

NirmataOSS Workflow

Main Features

Task relationships management
Distributed scheduling
Task-types customization
Runtime cluster changes support

No Single point of failure

M nirmata
O

NirmataOSS Workflow

Key COmpOnentS Task Queue Scheduler
WorkflowManager
Scheduler WorkflowManger
Task Queue
Task Executor
Executor Executor Executor
Mnirmata

NirmataOSS Workflow

WorflowManager

———

———

WoaorflowManager

——————

WoaorflowManager

(TaskTypel) (TaskType2) (TaskType3)
submit submit submit
task task task
d‘” ” : ~‘ .‘\n
o Y - Scheduler
TaskQueuel TaskQueue2 TaskQueue3
(TaskTypel) (TaskType2) (TaskType3)
A ' A A
' notify 1 1 '
execute i i i execute i execute
| &
. . ». Service
TaskExecutorl TaskExecutor2 TaskExecutor3
(TaskTypel) (TaskType2) (TaskType3)

Task Execution Model

Producer-Consumer based

Decentralized
Distributed

Asynchronous

M nirmata

NirmataOSS Workflow

Multi-tasks Workflow Model
DAG task

Concurrent vs Sequential execution

M nirmata

NirmataOSS Workflow

How to build workflow

private WorkflowManager buildWorkflow() {
Duration runPeriod = Duration.ofSeconds(690);
AutoCleaner cleaner = new StandardAutoCleaner(Duration.ofMinutes(5));
final WorkflowManagerBuilder workflowManagerBuilder = WorkflowManagerBuilder.builder().withCurator(
_curator, namespace, WORKFLOW VERSION).withAutoCleaner(cleaner, runPeriod);

Adding concurrent executor

workflowManagerBuilder.addingTaskExecutor(demoTaskExecutor, CONCURRENT TASKS, DEMO TASK TYPE);

M nirmata
O

NirmataOSS Workflow

Writing executor

final TaskExecutor demoTaskExecutor
return () -> {
try {
_sctrl.loginlLocal();
final String runId = executableTask.getRunId().getId();
final String taskId = executableTask.getTaskId().getId();
_logger.debug("executing demoTask {} - {}, {}", runld, taskId, Thread.currentThread());

(workflowManager, executableTask) -> {

return new TaskExecutionResult(TaskExecutionStatus.SUCCESS, "");

} catch (final Throwable t) {
_logger.error("Failed to execute demo task: {}", t);
return new TaskExecutionResult(TaskExecutionStatus.FAILED STOP,
"Failed to execute demo task");
} finally {
_sctrl.logout();
h

M nirmata
O

M nirmata
O

Other solutions

Netflix Conductor

a JSON DSL based blueprint that defines the execution flow.
AWS Simple Workflow

a cloud workflow management application to coordinate applications

across multiple machines.

M nirmata
O

Thank you !

Nirmata booth S61

M nirmata
O

