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- Workflow Execution
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- Exrror handling
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The Workilow
Pattern makes life
easier
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Working on Nirmata cloud service, mainly focus on microservice based orchestrator managing and
deploying container applications
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China Unicom
Nov 2007 - Jul 2015 - 7 yrs 9 mos
Shanghai City, China
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Presentation Goal

To introduce the Distributed Workflow
pattern and its usage in
Microservices-style applications using
NirmataOSS workflow library
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Microservice Architecture

Workflow Overview

Workflow Management on Microservices
NirmataOSS Workflow

Demo

Other solutions
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Microservice Architecture

API| Gateway

Customer Order Payment
Service Service Service Service

Independent modular services
Communicate through well-defined mechanism (e.g. REST api)
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Workflow Overview

Sequence of tasks Workflow A
. . Task1 Task2 Task3

Coordinated execution Placeorder || Paytheorder ||  Ship products
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Workflow Overview (Distributed)
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multiple instances

multiple instances
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Workflow Management with Microservices

Challenge Task1 Task2 Task3
Place order 5 Pay the order 5 Ship product
Tasks execution across
multi-services
Distributed asynchronized [ Order m [ Payment m [ Shipping m
Service ; Service 5 Service
environment | ’

Dependencies between tasks

Complex logic handling
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NirmataOSS Workflow

Open source lib http://nirmataoss.qgithub.io/workflow/

Java based

Apache ZooKeeper and Apache Curator based

Lightweight and easy to use
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NirmataOSS Workflow

Main Features

Task relationships management
Distributed scheduling
Task-types customization
Runtime cluster changes support

No Single point of failure
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NirmataOSS Workflow

Key COmpOnentS Task Queue Scheduler
WorkflowManager
Scheduler WorkflowManger
Task Queue
Task Executor
Executor Executor Executor
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NirmataOSS Workflow

WorflowManager
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WoaorflowManager
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WoaorflowManager

(TaskTypel) (TaskType2) (TaskType3)
submit submit submit
task task task
d‘” ” : ~‘ .‘\n
o Y - Scheduler
TaskQueuel TaskQueue2 TaskQueue3
(TaskTypel) (TaskType2) (TaskType3)
A ' A A
' notify 1 1 '
execute i i i execute i execute
| &
. . ».  Service
TaskExecutorl TaskExecutor2 TaskExecutor3
(TaskTypel) (TaskType2) (TaskType3)

Task Execution Model

Producer-Consumer based

Decentralized
Distributed

Asynchronous
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NirmataOSS Workflow

Multi-tasks Workflow Model
DAG task

Concurrent vs Sequential execution
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NirmataOSS Workflow

How to build workflow

private WorkflowManager buildWorkflow() {
Duration runPeriod = Duration.ofSeconds(690);
AutoCleaner cleaner = new StandardAutoCleaner(Duration.ofMinutes(5));
final WorkflowManagerBuilder workflowManagerBuilder = WorkflowManagerBuilder.builder().withCurator(
_curator, namespace, WORKFLOW VERSION).withAutoCleaner(cleaner, runPeriod);

Adding concurrent executor

workflowManagerBuilder.addingTaskExecutor(demoTaskExecutor, CONCURRENT TASKS, DEMO TASK TYPE);
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NirmataOSS Workflow

Writing executor

final TaskExecutor demoTaskExecutor
return () -> {
try {
_sctrl.loginlLocal();
final String runId = executableTask.getRunId().getId();
final String taskId = executableTask.getTaskId().getId();
_logger.debug("executing demoTask {} - {}, {}", runld, taskId, Thread.currentThread());

(workflowManager, executableTask) -> {

return new TaskExecutionResult(TaskExecutionStatus.SUCCESS, "");

} catch (final Throwable t) {
_logger.error("Failed to execute demo task: {}", t);
return new TaskExecutionResult(TaskExecutionStatus.FAILED STOP,
"Failed to execute demo task");
} finally {
_sctrl.logout();
h
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Other solutions

Netflix Conductor

a JSON DSL based blueprint that defines the execution flow.
AWS Simple Workflow

a cloud workflow management application to coordinate applications

across multiple machines.
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Thank you !

Nirmata booth S61
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