X

£x
\ " 4

KubeCon

—— North America 2017 ——

Democratizing Machine Learning on
Kubernetes

Joy Qiao, Senior Solution Architect - Al and Research Group, Microsoft
Lachlan Evenson - PrlnC|paI Program ManagMKS/ACS%cro&

RS PR
(AN N2V
Y 2l
AENE SRR

ER X
SSE
SR
e W

.. -
-—w
e w* Lo 0. o

Who are we?

The Data Scientist
Building and training models
Experience in Machine Learning libraries

Basic understanding of computer hardware
Lucky to have Kubernetes experience

Data Scientist

Who are we? (continued)

The Infra Engineer/SRE

Build and maintain baremetal/cloud infra
Kubernetes experience

Little to no Machine Learning library experience

Infra Engineer
SRE

ML on Kubernetes

Infra Engineer
SRE

Data Scientist

Why th

1S matters

We have t
We have t

ne RIGHT tools and libraries to build and train models
ne RIGHT platform in Kubernetes to run and train

these Mmoo

els

What we’ve experienced

Two discrete worlds are coming together

The knowledge is not widely accessible to the right audience
Nomenclature

Documentation and use-cases are lacking
APls are evolving very fast, sample code gets out of date quickly

How do we?

Enable Data scientists to be successful on Kubernetes

How do we enable Infrastructure engineers/SREs to build ML
platforms

_ower the barrier to entry
Begin to build some best-practices and baselines

Let’s get started

Running Distributed TensorFlow on

Kubernetes

In just 4 simple steps

Running Distributed TensorFlow on

Kubernetes (continued)

Create a Kubernetes cluster

PV for central storage (e.g. for saving model checkpoints, etc.)
Setup GPU drivers on the agent host VMs with GPUs
Create a set of pods for distributed TensorFlow
Run Distributed TensorFlow training job

Detailed instructions at https://github.com/joyqg-github/TensorFlowonK8s

https://github.com/joyq-github/TensorFlowonK8s

Running Distributed TensorFlow on

Kubernetes (continued)

Sample YAML for a TensorFlow worker pod with GPUs
Check to make sure your K8s has your GPU resources data.
$kubectl describe nodes

Capaclity:
alpha.kubernetes.io/nvidia—-gpu:
cpu:
memory:
pods:

Allocatable:
alpha.kubernetes.io/nvidia—-gpu:

cpu:
memory.

pods:

Distributed Training Architecture

Data Parallelism

1. Parallel training on different
machines

2. Update the parameter server
synchronously/asynchronously

3. Refresh the local model with new
parameters, go to 1 and repeat

Credits: Taifeng Wang, DMTK team

Distributed Training Architecture

Model Parallelism

Global model
@ Nodes on this The global model is partitioned Into
% Nodes on the other K sub-models.
=52 ot orker The sub-models are distributed over
Local worker 0 ocal orker K local workers and serve as their

ocal models.

n each mini-batch, the local workers
compute the gradients of the local
weights by back propagation.

Credits: Taifeng Wang, DMTK team

Distributed TensorFlow

Architecture

For Variable Distribution & Gradient Aggregation

Parameter_server

Parameter
Server 1

Read variables

Parameter
Server 2

CcRU | Compute gradient totals across GPUs
- 44 A4 44
mcmpy variables to GPU / /Copy gradients to ¢PU
cpuo [|1} Ongoing compute i
cPu1 || Ongoing compute |

Time

L

Single worker's view of variable reads and updates in parameter_server mode, with three variables.

Source: https://www.tensorflow.org/performance/performance_models

Training Environment on Azure

VM SKU
o NC24r for workers
= 4x NVIDIA® Tesla® K80 GPU
= 24 CPU cores, 224 GB RAM

o D14 _v2 for parameter server
= 16 CPU cores, 112 GB RAM

e Kubernetes: 1.6.6 (created using ACS-Engine)
 GPU: NVIDIA® Tesla® K80

* Benchmarks scripts:
https://github.com/tensorflow/benchmarks/tree/master/scripts/tf cnn_benchmarks

* OS: Ubuntu 16.04 LTS

* TensorFlow: 1.2

CUDA / cuDNN: 8.0 /6.0
Disk: Local SSD

DataSet: ImageNet (real data,
not synthetic)

Training on Single node, Multi-GPU

Resnet-50 with batchsize=64

200

Linear scalability
GPUs are fully saturated

No. of GPUs

* variable_update mode: parameter_server
* Jlocal_parameter_device:cpu

Distributed Training

Settings:
Topology: 1 ps and 2 workers
Async variables update

Using cpu as the local parameter_device

Each ps/worker pod has its own dedicated host
variable update mode: parameter_server
Network protocol: gPRC

Distributed Training (continued)

900

818

800
700

600

Single-node Training with 4 GPUs
vs Distributed Trainingwith 2 workers with 8 GPUs in .
total % 440 B 4 GPUs

&
© m 8 GPUs
£ 400

300
200

100

googlenet inceptionV3 net-152 vggl6

0

Distributed Training (continued)

Distributed training scalability depends on the compute/bandwidth ratio of the model

Computation Cost Relative to AlexNet Ratio of Comp/Param Relative to AlexNet
41 Ml AlexNet 141 I AlexNet
Inceptiony 12 mm entiony: I
I | tionV3 I tionV3 . .
g 5| m- resneso |- ResNets0 The model with a higher
o | .
c o o ratio scales better.
E2 5
-] 6
£
84l 4
2_
0- ol
Network Network
Number of Parameters Relative to AlexNet Training Speedup on 2 nodes vs single-node
1.0 At GooglLeNet scales pretty well.
ooglLeNef . . .
B InceptionV3 2.00 1.86 VGG16 is suboptimal, due toits large
0.81 m ResNetS0 1.80 1.60 156 :
" 1.60 ! size
E 0.61 1.40 1.27
% 2 1.20
. el
5 0.4 g 1.00
o & 0.80 0.63
0.60
0.2 0.40
0.20
0.0- 0.00

Network

Source: https://arxiv.org/abs/1704.04560

googlenet inceptionV3 resnet-50 resnet-152 vggle

Distributed Training (continued)

Observations during test:
Linear scalability largely depends on the model and network bandwidth.

GPUs not fully saturated on the worker nodes, likely due to network bottleneck.
VGG16 had suboptimal performance than single-node training. GPUs “starved” most of the time.

Running directly on Host VMs rather than K8s pods did not make a huge difference, in this
particular test environment.

Having ps servers running on the same pods as the workers seem to have worse performance
Tricky to decide the right ratio of workers to parameter servers

Sync vs Async variable updates

Distributed Training (continued)

How can we do better?

Horovod: Uber’s Open Source Distributed Deep Learning

Framework for TensorFlow

Benchmark on 32 servers with 4 Pascal GPUs each connected by RoCE-capable 25 Gbit/s network
(source: https://qithub.com/uber/horovod)

Training with synthetic data on NVIDIA® Pascal™ GPUs
& Y * Astand-alone python package

18,000.0

16,000.0 * Seamlessinstall on top of TensorFlow

14,000.0 .

12000, e Uses NCCL for ring-allreduce across
2 10,0000 servers instead of parameter server
& .

s 80000 » Uses MPI for worker discovery and
= 6,000.0 . . .
I reduction coordination
o n el H
2,000.0 * Tensor Fusion
oo — omitll nﬁni i [ol
1 8 16 32 64 128 1 8 16 32 64 128 1 8 16 32 64 128

Inception V3 ResNet-101 VGG-16
Number of GPUs and model name

M Distributed TensorFlow Horovod (TCP) M Horovod (RDMA) Oldeal

https://github.com/uber/horovod

Deep Gradient Compression:

Reducing the Communication Bandwidth for Distributed Training

Source: https://openreview.net/forum?id=SkhQHMWOW ¬eld=SKkhQHMWOW
Paper Summary:
99.9% of the gradient exchange in distributed SGD is redundant
Propose Deep Gradient Compression (DGC) to greatly reduce the communication bandwidth

DGC achieves a gradient compression ratio from 270x to 600x without losing accuracy, cutting the
gradient size of

ResNet-50 from 97MB to 0.35MB
DeepSpeech from 488MB to 0.74MB

Enables large-scale distributed training on inexpensive commodity 1Gbps Ethernet and facilitates
distributed training on mobile.

https://openreview.net/forum?id=SkhQHMW0W¬eId=SkhQHMW0W

Deep Learning Workspace by Microsoft Research

Powered by Kubernetes

Alpha release available at
https://github.com/microsoft/DL\WWorkspace/

Documentation at https://microsoft.qithub.io/DLWorkspace/

Note that DL Workspace is NOT a MS product/service.
It's an open source toolkit, and we welcome contribution!

https://github.com/microsoft/DLWorkspace/
https://microsoft.github.io/DLWorkspace/

Deep Learning Workspace by Microsoft Research

Powered by Kubernetes

“FreeFlow” CNI plugin from Microsoft Research
Leverage shared memory and RDMA to improve network performance
Higher throughput, lower latency, and less CPU overhead
Transparent to the containers & the apps
Deployed as DaemonSet

Custom CRI & Scheduler: GPU-related resource scheduling on
K8s (Credits: Sanjeev Mehrotra from MS Research)

Pods with no. of GPUs with how much memory
Pods with no. of GPUs interconnected via NVLInk, etc.
Eventually may go into the device plugins

Resources

Getting Started with Kubernetes on Azure
https://github.com/Azure/acs-engine
https://docs.microsoft.com/en-us/azure/container-service/kubernetes/

Running Distributed TensorFlow on Kubernetes using ACS/ACS-
Engine
https://github.com/joyg-github/TensorFlowonK8s

https://github.com/Azure/acs-engine
https://docs.microsoft.com/en-us/azure/container-service/kubernetes/
https://github.com/joyq-github/TensorFlowonK8s

Resources (continued)

Deep Learning Workspace powered by Kubernetes

https://github.com/microsoft/DL\Workspace/
https://microsoft.github.io/DLWorkspace/

TensorFlow resources
https://www.tensorflow.orag/performance/

https://eng.uber.com/horovod/
https://arxiv.org/abs/1704.04560

FreeFlow: High Performance Container Networking
https://www.microsoft.com/en-us/research/publication/freeflow-high-performance-container-
networking-3/

https://github.com/microsoft/DLWorkspace/
https://microsoft.github.io/DLWorkspace/
https://www.tensorflow.org/performance/
https://eng.uber.com/horovod/
https://arxiv.org/abs/1704.04560
https://www.microsoft.com/en-us/research/publication/freeflow-high-performance-container-networking-3/

