
CrashLoopBackoff,
Pending, FailedMount

and Friends
Debugging Common Kubernetes Cluster and

Application Issues



About Me
In IT since my �rst job helping out with computers in my high school in 1994

Past employers: CoreOS, Red Hat, Electronic Arts among many others

Currently a Senior Consultant for  ( )

Blood type: Ca�eine-positive

Contact info:

Twitter: 
: @kensey

we're hiring!

jthompson@oteemo.com
@ca�einepresent

Kubernetes Slack
LinkedIn

https://oteemo.com/careers/
mailto:jthompson@oteemo.com
https://twitter.com/caffeinepresent
https://kubernetes.slack.com/
https://www.linkedin.com/in/kensey/


First thoughts



None of this is rocket science, it's just a new
rocket engine

Most of it isn't even really new -- we're just probing the state and outputs of the system. The only new
things are:

Some of the tools
Some of the parts you probe

Image: the "�rst bug" log page written by Grace Hopper in
1945 
Credit: Wikimedia Commons



Your application
deployment just failed



Take a deep breath...
Don't panic
Find the Little Book of Calm
Assorted other advice from classic works of �ction



Now let's �x it
Gather info
Form a plan
Test and execute



Gathering info: tools and
techniques



Some �rst steps
Get the lay of the land...

Often you will spot the issue right here

kubectl get [-o wide] <nodes, pods, svc...> 
kubectl describe [-o yaml] <node, pod, svc...>



Let's talk about...
Image credit:
matuska@pixabay



kubectl get events
Provides a summarized view of recently-seen events, e.g:

NAMESPACE   LASTSEEN   FIRSTSEEN   COUNT      
NAME                                        KIND                     
SUBOBJECT   TYPE      REASON          SOURCE                         
MESSAGE 
default     6s         6d          39910      
data-romping-buffoon-elasticsearch-data-0   PersistentVolumeClaim    
            Normal    FailedBinding   persistentvolume-controller    
no persistent volumes available for this claim and no storage  
class is set



kubectl logs
Note: no get

Gets logs from a container in a pod:

If the pod has multiple containers, container must be speci�ed too with -c

<probe> INFO: 2017/11/14 21:55:43.738702 Control connection to  
weave-scope-app.default.svc starting 
<probe> INFO: 2017/11/14 21:55:45.789142 Publish loop for  
weave-scope-app.default.svc starting



Container logs
Good old-fashioned SSH followed by interacting with the system logs or container runtime

"Didn't we just do that with kubectl?" -- If you have really bad cluster issues or you're debugging an
issue with a control-plane component, you might not be able to use kubectl



Debugging containers
SSH to host
Run a container in an existing container's namespace

"Why?!"

If the application doesn't provide good logs, or doesn't know what issues it's encountering, at least
you can interrogate its environment
If the host itself has issues and lacks the usual tools, this is often safer and quicker than trying to
install them permanently on the host



What to look for



Know what "normal abnormal" behavior
looks like

In my cluster, this is not a problem when I deploy Weave Scope because I don't have Weave networking
deployed

<probe> WARN: 2017/12/08 07:39:07.762765 Error collecting weave status,  
backing off 10s: Get http://127.0.0.1:6784/report: dial tcp 127.0.0.1:6784:  
getsockopt: connection refused 
<probe> WARN: 2017/12/08 07:39:07.767862 Cannot resolve 'scope.weave.local.':  
dial tcp 172.17.0.1:53: getsockopt: connection refused 
<probe> WARN: 2017/12/08 07:39:07.816447 Error collecting weave ps, backing  
off 20s: exit status 1: "Link not found\n"



Cluster networking issues
Did you deploy a cluster network?

If you did, are the pods for it starting correctly?
Are the expected interfaces showing up on the host?

Are �rewalls preventing packets from �owing between hosts?

(Note: no deep dive here, because the topic is vast...)



Pod startup issues
Are your pods getting scheduled?
Are your pods starting? If not, why not?
Are your pods starting but crashing?

Container pull/startup issues?
Init container failing?
Readiness/liveness probes failing?
Running out of resources (not only actual usage, but requests)?



Service discovery issues

Cluster DNS issues?
Typos in service names?
Deployed in wrong namespace?
kube-dns not healthy?

Do your services have endpoints? If not, why not?

<probe> WARN: 2017/12/08 17:49:35.260659 Cannot resolve  
'kubecon2018.default.svc': lookup kubecon2018.default.svc on  
10.3.0.10:53: no such host



Access control issues

NetworkPolicy preventing tra�c?
RBAC preventing reading resources?

Need to create a role/service account/binding?
Often an issue with things that manage Kubernetes itself or use it for discovery

TLS issues?

<probe> WARN: 2017/12/08 07:56:19.104684 Error Kubernetes reflector (pods),  
backing off 40s: github.com/weaveworks/scope/probe/kubernetes/client.go:195:  
Failed to list *v1.Pod: pods is forbidden: User "system:serviceaccount:default: 
kubecon2017-weave-scope" cannot list pods at the cluster scope 
<probe> WARN: 2017/12/08 07:56:19.106268 Error Kubernetes reflector (nodes),  
backing off 40s: github.com/weaveworks/scope/probe/kubernetes/client.go:195:  
Failed to list *v1.Node: nodes is forbidden: User "system:serviceaccount: 
default:kubecon2017-weave-scope" cannot list nodes at the cluster scope



Hey, so how do I �x it?
Usually that's the easy part: Kubernetes is declarative, so just redeclare things correctly:

Don't forget to �x things before you clean up old pods/etc. Kubernetes does a lot of cleaning up for you
-- don't make work for yourself

kubectl apply -f ...



Preventive and remedial
measures



Application design
Does your application log diagnostic info? Does it do so correctly?

BAD: "lp0 on �re"
Yes, I'm harping on logs again
Does it log enough? Are you sure?
Write more detailed logs anyway

Does your application have diagnostic tools? Do you document them?
How safe is data and state in case of app failure? Can your application roll back? Have you tested
that?



Pre-deployment
Automate, automate, automate

Preaching to the choir, I know
Factor out redundancy -- repeating yourself is error-prone
Your environment should not only support both of the above, they should be the obvious path of
least resistance -- look at Helm, Draft, etc. for automating/templating app deployments
Consider the Cluster Autoscaler or other methods of auto-scaling
Test environments are not optional



Post-deployment
Application validation tests -- make sure your successful deployment was a correct deployment
Ongoing monitoring -- but avoid "alert fatigue" by choosing your alert conditions well

Make sure your conditions make sense for your environment
Adopt the chaos monkey (see  or ) -- you show me a server with high uptime and I'll show
you a server with unpersisted state

here here

https://github.com/asobti/kube-monkey
https://blog.spinnaker.io/running-chaos-monkey-on-spinnaker-google-compute-engine-gce-155dc52f20ef


Where you can get more
help



Kubernetes Docs
API docs:  -- great for resource syntax

Other good info on the main Tasks page:  -- see sidebar under
"Monitor, Log and Debug" (especially  and )

https://kubernetes.io/docs/api-reference/v1.8/

https://kubernetes.io/docs/tasks
Troubleshoot Clusters Troubleshoot Applications

https://kubernetes.io/docs/api-reference/v1.8/
https://kubernetes.io/docs/tasks
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-cluster/
https://kubernetes.io/docs/tasks/debug-application-cluster/debug-application/


Kubernetes Slack
kubernetes.slack.com, channels: 

: beginner/"how do I get started?" issues 
: General questions

#kubernetes-novice
#kubernetes-users

https://kubernetes.slack.com/messages/kubernetes-novice
https://kubernetes.slack.com/messages/kubernetes-users


Look within
A lot of your traditional knowledge is still relevant

"None of this is new" -- Chen Goldberg, here, yesterday
 is almost 22 years old but will still give you pertinent advice

Take the time to fully describe problems you encounter (rubber-duck debugging)

RFC 1925

https://tools.ietf.org/html/rfc1925


Demos



Final thoughts



We've just scratched the surface here
"Aren't there tools for this stu�?" -- yes, but what if deploying them fails? This is about giving you base
knowledge to understand what underlies those tools

There are a lot of tools out there with advanced capabilities that will help you prevent, debug and �x
problems -- �nd some awesome ones you love and tell us all about them!



Don't Fall for Impostor Syndrome

You know more than you think you do! If you feel like
you're drinking from a �rehose (especially the last
three days!) then it just means you've got a good
handle on the state of things

"Trust Yourself" -- Ilya Chekrygin, here, yesterday



Questions?



Grateful Appreciation To:
Oteemo management (hi Sam!) for getting me here

Justin Garrison and Michelle Noorali for abstract help

Many CoreOS engineers and Red Hat trainers past and present for teaching me how to do this stu�



and

Thank you!
for listening!

Slides: 
Files for demos

http://bit.ly/2B81csY+ 

file:///home/kensey/debugging-kubernetes-app-deploys-kc2017/demos/
http://bit.ly/2B81csY+

