
Cost-effective Compute Clusters with
Spot and Preemptible Instances

Presenters
Slides

https://goo.gl/LbEc1u

Arun Sriraman
Software Engineer
Platform9 Systems

Bich Le
Co-founder & Chief Architect
Platform9 Systems

https://goo.gl/LbEc1u

About Platform9 Systems

Agenda

• Motivation
• Bidding Strategies
• Implementation strategies
• Supporting K8s mechanisms
• Application Scheduling considerations
• Case Study
• Demo

Introducing spot & preemptible instances

• Cheaper instances (60-80% savings)
• But with a catch: can be terminated any time

• AWS: random
• Google Cloud: within 24 hours

• Historically requires some skill
• But Kubernetes makes them easier to use and mainstream

• Apps designed to tolerate node failure

Bidding strategies

Source: https://aws.amazon.com/blogs/aws/focusing-on-spot-instances-lets-talk-about-best-practices/

• Capacity pool (CP)
• Logical container
• Shares same AZ, region, OS

and instance type
• Best practices

• Build Price-Aware Applications
• Check the Price History
• Use Multiple Capacity Pools

Amazon EC2 Spot Instances

Amazon EC2 Spot Instances

Amazon EC2
Spot Instance
Pricing History

Region:
Oregon
(us-west-2)

Google Cloud

~80% flat
discount on list
price

Excess/surplus
capacity (not a
secondary
market)

Benefits

Specific applications & use cases that benefit this scheme
• Elastic / bursting applications

• Stateless compute intensive tasks (HPC workloads)

• Highly available clustered apps

• Horizontal node auto-scaling scenarios

Implementation Mechanisms - GKE

• Use multiple NodePools for a given cluster
• At least one node pool without preemptible instances
• NodePools can be added to a cluster and scaled dynamically
• Auto-upgrade and auto-repair support for ContainerOS image

today.
• Future-proofing using 0 size node pool

Implementation Mechanisms - GKE
Two pools in the cluster - A fixed pool and a default-pool that has preemptible nodes enabled

Implementation Mechanisms - kops

• Open Source project - https://github.com/kubernetes/kops
• Supports deploying K8s clusters on AWS & GCE
• Supports Spot Instance for AWS
• Concept of Instance Groups (IG)

• Master IG
• Multiple node IG (workers)

• Each IG backed by an Auto Scaling Group (ASG)
• Ability to auto-scale and heal instance terminations

https://github.com/kubernetes/kops

Implementation Mechanisms - kops

Implementation Mechanisms - kops

apiVersion: kops/v1alpha2
kind: InstanceGroup
metadata:
 labels:
 kops.k8s.io/cluster: arun-kops02.k8s.local
 name: nodes
spec:
 image: kope.io/k8s-1.7-debian-jessie-amd64-hvm-ebs-2017-07-28
 machineType: t2.medium
 maxPrice: "0.0630"
 maxSize: 2
 minSize: 2
 role: Node
 subnets:
 - us-west-2a

Implementation Mechanisms - kops

Demo

1. Cluster creating using kops on AWS

2. Horizontal pod auto scaling + Node autoscaling on GKE
(Cloud bursting use-case)

Application scheduling considerations

• Stateless applications vs stateful applications
• Minimum service availability

• Application replica distribution across nodes
• Node failure rescheduling considerations

• Moving pods to same pool/different node pool
• Specific hardware requirements, eg. GPU processing, network

Supporting K8s mechanisms

NodeSelector
• Preemptible VMs

come with a default
label

• NodePools also have
labels that can be
used for scheduling
decisions

cloud.google.com/gke-preempt
ible=true

Supporting K8s mechanisms

• Affinity: Preferred
preemptible resource for
pod but not mandatory

• Anti-affinity: Preferred
fixed node resource for
pod but not mandatory

Label:
failure-domain.beta.kubernetes.io/zone
Affinity type:
preferredDuringSchedulingIgnoredDuring
Execution

Using node affinity & anti-affinity with spot instances

Demo

Application availability - nodeSelector and affinity using a GKE
cluster

Case Study / Experiment

CloudProvider: GKE
Resource pool: 2 node cluster
% split of preemptive and fixed nodes: 50%
K8s version: 1.8.3-gke.0
Duration: 12 days
Active workload: none

Case Study / Experiment
Observations
● Preemptible instance

price fluctuation very low
to none

● trend/average instance
lifetime ~24 hrs

● Does not support
shutdown hooks today

● Cannot turn off/on
preemptive instances
after Node Pool creation

Case Study / Experiment

Total Costs: $16.02

Cost Analysis

Case Study / Experiment

Total costs without preemptible instances: $24.65 (13.44 * 2 -
1.97 - .26)
Total Savings: $8.63 ($24.65 - $16.02)

Extrapolating to 100 node cluster, savings for a year would be:
(100 / 2) * 8.63 * (365 / 12) = $13,126.23
Since our costing was for 2 nodes run for twelve days with 50%
preemptive instances (50 fixed price nodes + 50 preemptible
nodes)**

Thank You

• Slides
• https://goo.gl/LbEc1u

• For more info
• www.platform9.com

• Please take a moment to provide your feedback
• https://sayat.me/arunsriraman/

https://goo.gl/LbEc1u
http://www.platform9.com
https://sayat.me/arunsriraman/

