
decco: Secure, Multitenant Cluster
for Internet Facing Services

Bich Le, Chief Architect @Platform9

Background & Motivation

deploy, manage & maintain {						|						|							}	

Private Cloud Public Cloud

as a service

on the infrastructure of your choice

Objectives

• Run control plane services on shared Kubernetes cluster(s)
• Secure enough to host multiple customers
• Simplify Kubernetes without hiding its power and API
• Useful to community

Deployement Cluster Config & Ops

• Public repo: https://github.com/platform9/decco
• Follows the Kubernetes controller/operator pattern
• Runs inside or outside cluster
• Automates provisioning and teardown of

•  DNS records
•  K8s resources: namespaces, deployments, services, ingress, netpolicies

•  Introduces 2 custom resources: Space, App

DNS conventions for service endpoints

For hypothetical customer “foo”
• Customer-wide fqdn: foo.platform9.net
• Region-specific fqdn: foo-regionname.platform9.net
• Services using reverse proxy (HTTP only):

foo-regionname.platform9.net/servicename
• Services not using reverse proxy (TCP and HTTP):

servicename.foo-regionname.platform9.net

Network security

General observations about control plane services:
• TLS encryption for all traffic
• HTTP services

•  don’t use client certificate authentication
•  use app-level authentication (Keystone)

• TCP services
•  use client certificate auth
•  optionally use app-level auth (e.g. rabbitmq / mysql password)

Network security (cont’d)

Internally, decco secures the network using a combo of
• TLS

•  encryption
•  mutual certificate verification

• Network Policy resources

decco concepts

• Space
• Project
• App

Space

• A naming and isolation boundary for a related set of Internet-
facing services

	
Space	

	

DNS	fqdn	

k8s	namespace	

Space – example yaml

Space – what happens upon creation

Decco creates:
• Namespace
• DNS record
• Optional network policy resource (see Project slide)
• Resources needed for network routing and TLS processing

DNS update details

Decco uses same DNS library as Kubernetes Federation
1.  Compute FQDN

•  Space: ${spaceName}.${domainName}
•  TCP Service: ${svcName}.${spaceName}.${domainName}

2.  Lookup external endpoint (IP/fqdn) of cluster’s ingress service
3.  Using configured DNS provider

•  Lookup hosted zone corresponding to the space’s domain name
•  If found, create A or CNAME record for the FQDN in the hosted zone,

otherwise fail

Project

• An optional property to restrict incoming connections to those from
spaces with the same project name

•  Internally enforced using a Network Policy with namespaceSelector
• Tested on GKE “Alpha” 1.8.x cluster with Calico network plugin

Example

foo.pla7orm9.net	
	
	mysql	 keystone	

foo-east.pla7orm9.net	
	
	mysql	 nova	

foo-west.pla7orm9.net	
	
	mysql	 nova	

bar.pla7orm9.net	
	
	mysql	 keystone	

bar-west.pla7orm9.net	
	
	mysql	 nova	

project:	foo	 project:	bar	

global.pla7orm9.net	
	

consul	
project:	(none)	

App

• A thin wrapper around a PodSpec, specifying a service listening
on a given port (Planned: support for multiple service ports)

• Service can be externally exposed via
•  reverse proxy (httpUrlPath not empty)
•  direct TCP (httpUrlPath empty)

• TCP specific options
•  tlsCaAndCertSecretName (use space default secret if not specified)
•  verifyTcpClientCert
•  createDnsRecord

• Other options: initialReplicas, tlsEgresses

App – http example

App – tcp example

App – what happens at creation time

• Create service resource(s)
• Create DNS record if createDnsRecord is true

(example fqdn: myservice.myspace.platform9.net)
• Create resources for network routing and TLS

•  Ingress resources / path rules
•  Service mesh rules

• Create deployment resource with modified pod spec
•  Inject side cars needed for network routing

Network routing and TLS

• Planned: service mesh integration (e.g. Istio)
• Out of the box: cascaded ingress controllers

•  k8sniff inspects SNI headers and routes based on SNI server name
•  If no match, forwards to nginx ingress controller
•  Decco manages ingress resources for both (TCP and HTTP)
•  TLS

•  Certs need to be externally signed and supplied via secrets
•  Stunnel side cars

svc:	mysql	

pod:	mysql	
	
	 cntr:	stunnel-ingress	 cntr:	mysql	depl:	mysql	

tcp	ingress:	mysql.pepsi-west.pla7orm9.net	à	svc:mysql	

h,p	ingress:	
certSecret:	pepsi-west-hHp-cert	
host:	pepsi-west.pla7orm9.net	
rules:	
	
	
	
	

/	à	svc:	default	hHp	backend	

namespace:	decco	
ELB	

svc:k8sniff	 pod:k8sniff	 svc:nginx-ingress	 pod:nginx-ingress	 secret:	pepsi-west-hHp-cert	

secret:	pepsi-west-tcp-cert-and-ca	

space:	pepsi-west	(domain:	pla7orm9.net)	

namespace:	pepsi-west	

secret:	pepsi-west-hHp-cert	

secret:	pepsi-west-tcp-cert-and-ca	

app:	mysql	

/keystone	à	svc:	keystone	
pod:	keystone	
	
	
	 cntr:	stunnel-ingress	 cntr:	keystone	

cntr:	stunnel-egress-0	

svc:	keystone	

app:	keystone	
(path:	/keystone)	

Client	
mysql.pepsi-west.pla7orm9.net	

hHps://pepsi-west.pla7orm9.net/keystone	

depl:	keystone	

Roadmap

• Service mesh integration
•  Integration with Availability Zones and Kubernetes Federation
• Support multiple service endpoints per app
• Open source project

• Docs
• Automated test

• Explore better container isolation via VM-based solutions
(e.g. Frakti / runV)

Demo and Thanks!

• For more info
•  https://github.com/platform9/decco
•  http://www.platform9.com

• Other talks
•  Fission (serverless on Kubernetes)

(Thursday 2:45pm)
•  Cost-effective Compute Clusters using Spot and Preemptible Instances

(Friday 2pm)

