
Bottom Up Adoption of
Microservices w/

Kubernetes & Envoy
(Service Oriented Development)

Rafael Schloming - @rschloming
Philip Lombardi - @TheBigLombowski

datawire.io

How do I break up my monolith?

How do I architect my app with microservices?

What infrastructure do I need in place before I
can benefit from microservices?

2

datawire.io

● Building a cloud application using
microservices in 2015

● Distributed systems engineers
● Deeply studied microservices

Architectures & Technology

3

Microservices at Datawire ...

datawire.io

Control Plane and Data Plane

4

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

Control Plane

Discovery

AuthN/AuthZ

Routing policy

...

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

datawire.io

Debugging Velocity (or lack thereof)

5

datawire.io

Tooling
Architecture

Process!!!

6

datawire.io

Debugging our Pipeline

7

datawire.io

Velocity comes from Process, not
Architecture

8

datawire.io

Service Oriented Architecture
Service Oriented Development

9

datawire.io 10

Stability/Maturity

Velocity

Prototype Production Mission critical

datawire.io 11

Stability/Maturity

Velocity

Prototype Production Mission critical

datawire.io

A single process is inefficient
(Forces a single Stability vs Velocity Tradeoff)

12

datawire.io 13

Define

Code

Test

Release

Prod

datawire.io 14

Define

Code

Test

Release

Prod

Centralized process

● Specialized teams
● Fixed policies (e.g.,

release criteria)

datawire.io

A single process doesn’t scale

15

datawire.io

How do I break up my monolith?
How do I break up my process?

16

datawire.io 17

Microservices lets you run multiple processes!

datawire.io

Microservices is a distributed
development architecture

workflow.

18

datawire.io 19

Stability/Maturity

Velocity

Prototype Production Mission critical

● How do I get to Continuous Deployment incrementally?
● How do I limit the scope of PCI (audit process)?
● How do I ship feature X as fast as possible?

datawire.io

Microservices is ...

● Multiple processes
○ Including your existing process!
○ Processes designed for different stability/velocity

tradeoffs
● Simultaneous processes

20

datawire.io

Doing things this way shifts how people operate!

● Requires both organizational and technical changes

21

datawire.io

Organizational Implementation

22

datawire.io

Education

● Everyone exposed to full dev cycle

Communication

● Nobody speaks the same language

Delegation

● Small teams own big important parts

You gotta give in order to get

23

datawire.io

But you get a lot

24

Education

● Specialists become generalists -> Better holistic systems
● Learning, personal growth -> Job satisfaction

Communication

● Conflict -> Collaboration

Delegation

● Massive organizational scale

datawire.io

Create self-sufficient, autonomous
software teams.

25

datawire.io

Why self-sufficiency and autonomy?

● Self-sufficient
○ Team does not need to rely on other teams to achieve its goals

● Autonomy
○ Team is able to independently make (process) decisions on how to achieve its goals

26

datawire.io

Eliminate centralized specialist functions

27

Centralized architecture Centralized infrastructure / ops*
(You might need a platform team)

datawire.io

Think Spinoff

28

datawire.io 29

Monolith

datawire.io 30

Monolith

Microservice
Team

datawire.io

Technical Implementation

31

datawire.io

Control Plane and Data Plane

32

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

Control Plane

Discovery

AuthN/AuthZ

Routing policy

...

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

datawire.io

People operate the control plane

33

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...
Control Plane

Discovery

AuthN/AuthZ

Routing policy

...

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

Sidecar Proxies

Health checks

Observability

L4/L7 routing

...

Control Plane UI

People

datawire.io

Guiding goal: make our team productive

34

Tools for Generalists

● Generalist UX != Specialist UX
● Specialist: All the things
● Generalist: Simple, Complete, Discoverable

Tools for Education

● Build on familiar concepts
● Safe defaults
● Great feedback

Tools for Autonomous Developers

● Fit multiple processes

datawire.io

The Datawire Story...

● We have been building cloud apps as microservices since 2015

● Way too small to have an actual dedicated ops / platform engineer

35

datawire.io

The Datawire Story...

● But…! Good news I did that in a previous life.

● Problem…! I’m supposed to be writing product code.

36

datawire.io

The Datawire Story...

I wanted to do self-service so any developer could scratch their own itch without
bugging me.

37

datawire.io

Some design considerations...

● Polyglot programming shop

● Lots of different toolchains

● Distributed-ish engineering organization

● Not everyone has a strong background in microservices and infrastructure

● Several mission critical services

38

datawire.io

The Datawire Story...

Also I wanted to do it “right”... so I architected the shit out the problem with tools!

39

datawire.io 40

Expected Reaction… :D

datawire.io 41

… Actual Reaction D:

datawire.io

Late 2015… 2016...

Change was slow and painful before adopting better starting principles...

42

datawire.io

It’s about the people and process, dummy

● Turns out it is not a tooling problem…

● It is a people and process problem…

● Engineers hate adopting new tools when the reason is not compelling…
especially if the new tools make their life harder.

● All the tooling in the world does not stop people from continuing their existing
behaviors…

● Every tool has a cost because every tool can and will be used slightly differently
by different people.

43

datawire.io

“Did you read the README?” ~ “No, but...”

44

● A README isn’t enough.

● Developers are bad at RTFM and WTFM.

● Lots of arguments over people doing things
differently from how the README stated…

● Lots of arguments also over people not
knowing how to do things because the
README did not state anything about <X>.

datawire.io

Back to the drawing board...

● We wanted a common build/deployment mechanism that would work for
everyone and anything (including CI, multiple languages, etc.)

● Started with Docker as it gave a common way to package and ship code.

● Kubernetes had been on my radar since 2014 but seemed finally ready for mass
adoption at this point so we picked that to run containers.

45

datawire.io

Our Kubernetes Journey...

● We built tools based on two things:
a. Pain
b. Common patterns we discovered across all our repositories

46

datawire.io

1. Code a change on a branch (e.g. dev/awesome-feature)

2. Package the build toolchain into the Docker image itself!

3. Run a single command and a new Docker image is built… no need to setup tools
on developers machines. Build process is codified into Dockerfile.

Step 1: Provide fast repeatable builds for everyone

47

datawire.io

Step 1: I said everyone and I meant everyone...

48

datawire.io

1. Tools often forget about making compiled languages compile quickly…

2. Forge assists Docker and ensures things like build caches and incremental
compilation work across multiple runs :)

Step 1: Provide fast repeatable builds for everyone

49

datawire.io

● Commit (or don’t commit) a change on a branch (e.g. dev/awesome-feature)

● Run command and presto…! Updated code is running on the cluster without
disturbing any other deployment.

● Support any number of parallel deployments of the same codebase

Step 2: Provide fast self-service deploy

50

datawire.io

Step 1 + 2 Recap

● Docker and Kubernetes provide the backbone of build and deployment.

● We found ourselves mostly doing the same thing (docker build ...,
kubectl [apply|create] ...) so we codified it into tools that work fast
and have a small learning surface area for devs.

● Nothing “magical” about what the tools do and they can be easily bypassed if
necessary.

51

datawire.io

● Add a little metadata to a Kubernetes service manifest

● Ambassador listens and picks up change and configures Envoy

● Makes it super easy to do stuff like expose a branch (dev/awesome-feature)
as https://dev-awesome-feature.datawire.io

Step 3: Make it easy to reach the changed code

52

https://dev-awesome-feature.datawire.io

datawire.io

Hell no.
(But it’s soooooo much better than before)

Perfect?

53

datawire.io

What’s left?

● Self-service bootstrapping

● Self-service stateful infrastructure

● Self-service external to Kubernetes infrastructure (e.g. Amazon RDS)

● Monitoring And Logging

54

datawire.io

All the Things

55

datawire.io

Capabilities aren’t Enough, UX Matters

56

datawire.io

Process and People factors drive the UX

57

datawire.io

Build the tools your teams need now

58

Tools for Generalists

● Generalist UX != Specialist UX
● Generalist: Simple, Complete, Discoverable

Tools for Education

● Build on familiar concepts
● Safe defaults
● Great feedback

Tools for Autonomous Developers

● Fit multiple processes

datawire.io

Thank you!

59

Visit us at booth S58

● Cool swag
● Chat about development

UX and workflow

Build your own dev workflow

https://www.datawire.io/faster

Tweet Us!

@datawireio
@thebiglombowski
@rschloming

Email Us!

rhs@datawire.io
plombardi@datawire.io

https://www.datawire.io/faster

