Bottom Up Adoption of
Microservices w/
Kubernetes & Envoy
(Service Oriented Development)

Rafael Schloming - @rschloming
Philip Lombardi - @TheBigLombowski

o
"o

How do | break up my monolith?
How do | architect my app with microservices?

What infrastructure do | need in place before |
can benefit from microservices?

datawire.io

o
"o

Microservices at Datawire ...

e Building a cloud application using
microservices in 2015
Distributed systems engineers
Deeply studied microservices
Architectures & Technology

datawire.io

X
%

oy
"

Control Plane and Data Plane

/ Sidecar Proxies\
/ \ (Health checks
Control Plane :

: Observability

Discovery

J L4/L7 routing
AuthN/Authz ()
' Routing policy | \\ /

G »

e,
"o

Debugging Velocity (or lack thereof)

datawire.io

o
"o

Footing
Lrefttecstgre
Process!!!

@,
>SS
5353
e

Debugging our Pipeline

o
"o

Velocity comes from Process, not
Architecture

datawire.io

o
"o

 ericeOF A b
Service Oriented Development

datawire.io

Stability/Maturity

Velocity

Prototype Production Mission critical

Stability/Maturity

Velocity

Prototype Production Mission critical

o
"o

A single process is inefficient
(Forces a single Stability vs Velocity Tradeoff)

datawire.io

12

~ ()=
Y
S~ L
Define @ T A
o)
: &)
TN Release

Prod /

13

Define

S
/\

Prod

Centralized process

e Specialized teams
e Fixed policies (e.g.,
release criteria)

QD O

Release

14

o
"o

A single process doesn’t scale

datawire.io

15

datawire.io

o
"o

How-dotbreakup-my-monotith?

How do | break up my process?

16

Ay
"o

Microservices lets you run multiple processes!

datawire.io 17

o
"o

Microservices is a distributed
development areniteecture
workflow.

datawire.io

18

e Howdol getto Continuous Deployment incrementally?
e Howdol limitthe scope of PCI (audit process)?
e Howdo I ship feature X as fast as possible?

Stability/Maturity

Velocity

e |

Prototype Production Mission critical

e,
"o

Microservicesiis ...

e Multiple processes
o Including your existing process!
o Processes designed for different stability/velocity
tradeoffs
e Simultaneous processes

o
"o

Doing things this way shifts how people operate!

= £
DO 0

) 0 00y L
2% S o5 S S

e Requires both organizational and technical changes

datawire.io 21

datawire.io

o
"o

Organizational Implementation

22

)
%

oo
"

\V

You gotta give in order to get

Education

e Everyone exposed to full dev cycle
Communication

e Nobody speaks the same language
Delegation

e Smallteams own big important parts

datawire.io

23

e
"o

But you get a lot

Education

e Specialists become generalists -> Better holistic systems
e Learning, personal growth -> Job satisfaction

Communication
e Conflict -> Collaboration

Delegation

e Massive organizational scale

datawire.io

24

datawire.io

o
"o

Create self-sufficient, autonomous
software teams.

25

)
%

oy
"

\V

Why self-sufficiency and autonomy?

e Self-sufficient
o Team does not need to rely on other teams to achieve its goals

e Autonomy
o Teamis able to independently make (process) decisions on how to achieve its goals

datawire.io

26

e,
"o

Eliminate centralized specialist functions

Centralized infrastructure / ops*

Centralized architecture (You might need a platform team)

datawire.io

o
"o

Think Spinoff

28

G twilio

stripe /"

datawire.io

e
"o

Monolith

29

e,
"o

twilio
@ \ Microservice
Monolith / Team

stripe /"

datawire.io

o
"o

Technical Implementation

31

X
%

oy
"

Control Plane and Data Plane

/ Sidecar Proxies\
/ \ (Health checks
Control Plane :

: Observability

Discovery

J L4/L7 routing
AuthN/Authz ()
' Routing policy | \\ /

G »

9
%

"
X

.V
0

People operate the control plane

People }

N

)

Control Plane Ul 1

\

/ Control Plane \

Discovery

| AuthN/AuthZ

: Routing policy

/ Sidecar Proxi

o

: Health checks

: Observability

L4/L7 routing

)

G j/

)
%

oy
"

\V

Guiding goal: make our team productive

Tools for Generalists

e Generalist UX !=Specialist UX
e Specialist: All the things

e Generalist: Simple, Complete, Discoverable L
Tools for Education

0 ¢
e Build on familiar concepts ?%/}

e Safe defaults
e Greatfeedback

Tools for Autonomous Developers

e Fit multiple processes

)
%

oy
"

\V

The Datawire Story...

e We have been building cloud apps as microservices since 2015

e Way too smallto have an actual dedicated ops / platform engineer

9
X4

v
"

The Datawire Story...

e But...! Good news I did thatin a previous life.

e Problem...! ’'m supposed to be writing product code.

'o
%

oy
"

The Datawire Story...

| wanted to do self-service so any developer could scratch their own itch without
bugging me.

9
X4

o0
"

Some design considerations...

e Polyglot programming shop

e Lots of different toolchains

e Distributed-ish engineering organization

e Not everyone has a strong background in microservices and infrastructure

e Several mission critical services

e,
"o

The Datawire Story...

Also | wanted to do it “right”... so | architected the shit out the problem with tools!

Spinnaker

EC2

'o
%

>
>00<

Expected Reaction...:D

&

@,
>SS
5353
e

... Actual Reaction D:

9
X4

o0
"

Late 2015... 2016...

Change was slow and painful before adopting better starting principles...

X
%

oy
"

It’s about the people and process, dummy

e Turnsoutitisnotatooling problem...
e Itisapeopleand process problem...

e Engineers hate adopting new tools when the reason is not compelling...
especially if the new tools make their life harder.

e Allthetoolingin the world does not stop people from continuing their existing
behaviors...

e Everytool has a cost because every tool can and will be used slightly differently
by different people.

o
"o

“Did you read the README?” ~ “No, but...”

e AREADME isn’t enough.
e Developers are bad at RTFM and WTFM.

e Lots of arguments over people doing things
differently from how the README stated...

e Lots of arguments also over people not
knowing how to do things because the
README did not state anything about <X>.

datawire.io 44

9
X4

o0
"

Back to the drawing board...

e We wanted a common build/deployment mechanism that would work for
everyone and anything (including CI, multiple languages, etc.)

e Started with Docker as it gave a common way to package and ship code.

e Kubernetes had been on my radar since 2014 but seemed finally ready for mass
adoption at this point so we picked that to run containers.

9
X4

v
"

Our Kubernetes Journey...

e We built tools based on two things:
a. Pain
b. Common patterns we discovered across all our repositories

datawire.io

46

9
X4

[>< ><]
K25

Step 1: Provide fast repeatable builds for everyone

docker et

FORGE.SH

‘
%

b}

1. Codeachangeonabranch (e.g. dev/awesome-feature)

2. Package the build toolchain into the Docker image itself!

3. Runasingle command and a new Docker image is built... no need to setup tools
on developers machines. Build process is codified into Dockerfile.

Step 1: | said everyone and | meant everyone...

FScala

RGradle

9
X4

[><><]
K25

Step 1: Provide fast repeatable builds for everyone

dOCker FORGE.SH

¢
%

B

“a

1. Tools often forget about making compiled languages compile quickly...

2. Forge assists Docker and ensures things like build caches and incremental
compilation work across multiple runs:)

X
%

oy
"

Step 2: Provide fast self-service deploy

R

FORGE.SH

e Commit (or don’t commit) a change on a branch (e.g. dev/awesome-feature)

e Runcommand and presto...! Updated code is running on the cluster without
disturbing any other deployment.

e Support any number of parallel deployments of the same codebase

v
%

.V
"

Step 1 +2 Recap

e Docker and Kubernetes provide the backbone of build and deployment.

e We found ourselves mostly doing the same thing (docker build ...,

kubectl [apply|create] ...)sowe codifieditinto toolsthatwork fast
and have a small learning surface area for devs.

e Nothing “magical” about what the tools do and they can be easily bypassed if
necessary.

9
X4

o0
"

Step 3: Make it easy to reach the changed code
&

&@ envoy - &@;/

GETAMBASSADOR.IO

e Add a little metadata to a Kubernetes service manifest

e Ambassador listens and picks up change and configures Envoy

e Makes it super easy to do stuff like expose a branch (dev/awesome-feature)
as https://dev-awesome-feature.datawire.io

https://dev-awesome-feature.datawire.io

Perfect?

X
%

oy
"

Hell no.

(But it’s soooooo much better than before)

9
X4

o0
"

What’s left?

e Self-service bootstrapping

e Self-service stateful infrastructure

e Self-service external to Kubernetes infrastructure (e.g. Amazon RDS)

e Monitoring And Logging

datawire.io

5

e
"o

All the Things

&

55

e
"o

Capabilities aren’t Enough, UX Matters

5 REERCS

IC

e,
"o

Process and People factors drive the UX

5 REERCS

IC

X
%

oy
"

Build the tools your teams need now

Tools for Generalists

e Generalist UX !=Specialist UX
e Generalist: Simple, Complete, Discoverable

Tools for Education

e Build on familiar concepts
e Safe defaults
e Greatfeedback

Tools for Autonomous Developers

e Fit multiple processes

datawire.io

58

v,
%

’V
"

Thank you!

Tweet Us!

@datawireio
@thebiglombowski
@rschloming

Email Us!

rhs@datawire.io
plombardi@datawire.io

datawire.io

99

https://www.datawire.io/faster

