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How do I break up my monolith?

How do I architect my app with microservices?

What infrastructure do I need in place before I 
can benefit from microservices?

2



datawire.io

● Building a cloud application using 
microservices in 2015

● Distributed systems engineers
● Deeply studied microservices 

Architectures & Technology
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Microservices at Datawire ...
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Control Plane and Data Plane
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Debugging Velocity  (or lack thereof)
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Tooling
Architecture

Process!!!
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Debugging our Pipeline
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Velocity comes from Process, not 
Architecture
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Service Oriented Architecture
Service Oriented Development
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Stability/Maturity

Velocity

Prototype Production Mission critical
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Stability/Maturity

Velocity

Prototype Production Mission critical
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A single process is inefficient
(Forces a single Stability vs Velocity Tradeoff)
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Define

Code

Test

Release

Prod
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Define

Code

Test

Release

Prod

Centralized process

● Specialized teams
● Fixed policies (e.g., 

release criteria)
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A single process doesn’t scale
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How do I break up my monolith?
How do I break up my process?
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Microservices lets you run multiple processes!
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Microservices is a distributed 
development architecture 

workflow.
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Stability/Maturity

Velocity

Prototype Production Mission critical

● How do I get to Continuous Deployment incrementally?
● How do I limit the scope of PCI (audit process)?
● How do I ship feature X as fast as possible?
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Microservices is ...

● Multiple processes
○ Including your existing process!
○ Processes designed for different stability/velocity 

tradeoffs
● Simultaneous processes
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Doing things this way shifts how people operate!

● Requires both organizational and technical changes
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Organizational Implementation

22



datawire.io

Education

● Everyone exposed to full dev cycle

Communication

● Nobody speaks the same language

Delegation

● Small teams own big important parts

You gotta give in order to get
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But you get a lot

24

Education

● Specialists become generalists -> Better holistic systems
● Learning, personal growth -> Job satisfaction

Communication

● Conflict -> Collaboration

Delegation

● Massive organizational scale
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Create self-sufficient, autonomous 
software teams.
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Why self-sufficiency and autonomy?

● Self-sufficient
○ Team does not need to rely on other teams to achieve its goals

● Autonomy
○ Team is able to independently make (process) decisions on how to achieve its goals
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Eliminate centralized specialist functions
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Centralized architecture Centralized infrastructure / ops*
(You might need a platform team)
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Think Spinoff
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Monolith
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Monolith

Microservice
Team
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Technical Implementation
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Control Plane and Data Plane
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People operate the control plane
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Control Plane UI

People
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Guiding goal: make our team productive
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Tools for Generalists

● Generalist UX != Specialist UX
● Specialist: All the things
● Generalist: Simple, Complete, Discoverable

Tools for Education

● Build on familiar concepts
● Safe defaults
● Great feedback

Tools for Autonomous Developers

● Fit multiple processes
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The Datawire Story...

● We have been building cloud apps as microservices since 2015

● Way too small to have an actual dedicated ops / platform engineer
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The Datawire Story...

● But…! Good news I did that in a previous life. 

● Problem…! I’m supposed to be writing product code.
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The Datawire Story...

I wanted to do self-service so any developer could scratch their own itch without 
bugging me.
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Some design considerations...

● Polyglot programming shop

● Lots of different toolchains

● Distributed-ish engineering organization

● Not everyone has a strong background in microservices and infrastructure

● Several mission critical services
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The Datawire Story...

Also I wanted to do it “right”... so I architected the shit out the problem with tools!
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Expected Reaction… :D
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… Actual Reaction D:
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Late 2015… 2016... 

Change was slow and painful before adopting better starting principles...
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It’s about the people and process, dummy

● Turns out it is not a tooling problem…

● It is a people and process problem…

● Engineers hate adopting new tools when the reason is not compelling… 
especially if the new tools make their life harder.

● All the tooling in the world does not stop people from continuing their existing 
behaviors…

● Every tool has a cost because every tool can and will be used slightly differently 
by different people.
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“Did you read the README?” ~ “No, but...”
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● A README isn’t enough.

● Developers are bad at RTFM and WTFM.

● Lots of arguments over people doing things 
differently from how the README stated…

● Lots of arguments also over people not 
knowing how to do things because the 
README did not state anything about <X>.
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Back to the drawing board...

● We wanted a common build/deployment mechanism that would work for 
everyone and anything (including CI, multiple languages, etc.)

● Started with Docker as it gave a common way to package and ship code.

● Kubernetes had been on my radar since 2014 but seemed finally ready for mass 
adoption at this point so we picked that to run containers.
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Our Kubernetes Journey...

● We built tools based on two things:
a. Pain
b. Common patterns we discovered across all our repositories

46



datawire.io

1. Code a change on a branch (e.g. dev/awesome-feature)

2. Package the build toolchain into the Docker image itself!

3. Run a single command and a new Docker image is built… no need to setup tools 
on developers machines. Build process is codified into Dockerfile.

Step 1: Provide fast repeatable builds for everyone
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Step 1: I said everyone and I meant everyone...
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1. Tools often forget about making compiled languages compile quickly…

2. Forge assists Docker and ensures things like build caches and incremental 
compilation work across multiple runs :)

Step 1: Provide fast repeatable builds for everyone
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● Commit (or don’t commit) a change on a branch (e.g. dev/awesome-feature)

● Run command and presto…! Updated code is running on the cluster without 
disturbing any other deployment.

● Support any number of parallel deployments of the same codebase

Step 2: Provide fast self-service deploy
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Step 1 + 2 Recap

● Docker and Kubernetes provide the backbone of build and deployment.

● We found ourselves mostly doing the same thing (docker build ..., 
kubectl [apply|create] ...) so we codified it into tools that work fast 
and have a small learning surface area for devs.

● Nothing “magical” about what the tools do and they can be easily bypassed if 
necessary.
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● Add a little metadata to a Kubernetes service manifest

● Ambassador listens and picks up change and configures Envoy

● Makes it super easy to do stuff like expose a branch (dev/awesome-feature) 
as https://dev-awesome-feature.datawire.io

Step 3: Make it easy to reach the changed code
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https://dev-awesome-feature.datawire.io
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Hell no.
(But it’s soooooo much better than before)

Perfect?
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What’s left?

● Self-service bootstrapping

● Self-service stateful infrastructure

● Self-service external to Kubernetes infrastructure (e.g. Amazon RDS)

● Monitoring And Logging
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All the Things
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Capabilities aren’t Enough, UX Matters
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Process and People factors drive the UX

57



datawire.io

Build the tools your teams need now
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Tools for Generalists

● Generalist UX != Specialist UX
● Generalist: Simple, Complete, Discoverable

Tools for Education

● Build on familiar concepts
● Safe defaults
● Great feedback

Tools for Autonomous Developers

● Fit multiple processes
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Thank you!
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Visit us at booth S58

● Cool swag
● Chat about development 

UX and workflow

Build your own dev workflow

https://www.datawire.io/faster 

Tweet Us!

@datawireio
@thebiglombowski
@rschloming

Email Us!

rhs@datawire.io
plombardi@datawire.io

https://www.datawire.io/faster

