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How do | break up my monolith?
How do | architect my app with microservices?

What infrastructure do | need in place before |
can benefit from microservices?
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Microservices at Datawire ...

e Building a cloud application using
microservices in 2015
Distributed systems engineers
Deeply studied microservices
Architectures & Technology
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Debugging Velocity (or lack thereof)
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Debugging our Pipeline




o
"o

Velocity comes from Process, not
Architecture
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Service Oriented Development
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Stability/Maturity

Velocity

Prototype Production Mission critical
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A single process is inefficient
(Forces a single Stability vs Velocity Tradeoff)
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Centralized process

e Specialized teams
e Fixed policies (e.g.,
release criteria)
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Release
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A single process doesn’t scale
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How-dotbreakup-my-monotith?

How do | break up my process?
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Microservices lets you run multiple processes!
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Microservices is a distributed
development areniteecture
workflow.
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e Howdol getto Continuous Deployment incrementally?
e Howdol limitthe scope of PCI (audit process)?
e Howdo I ship feature X as fast as possible?

Stability/Maturity

Velocity

e |

Prototype Production Mission critical



e,
"o

Microservicesiis ...

e Multiple processes
o Including your existing process!
o Processes designed for different stability/velocity
tradeoffs
e Simultaneous processes
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Doing things this way shifts how people operate!
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e Requires both organizational and technical changes
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Organizational Implementation
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You gotta give in order to get

Education

e Everyone exposed to full dev cycle
Communication

e Nobody speaks the same language
Delegation

e Smallteams own big important parts
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But you get a lot

Education

e Specialists become generalists -> Better holistic systems
e Learning, personal growth -> Job satisfaction

Communication
e Conflict -> Collaboration

Delegation

e Massive organizational scale
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Create self-sufficient, autonomous
software teams.
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Why self-sufficiency and autonomy?

e Self-sufficient
o Team does not need to rely on other teams to achieve its goals

e Autonomy
o Teamis able to independently make (process) decisions on how to achieve its goals
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Eliminate centralized specialist functions

Centralized infrastructure / ops*

Centralized architecture (You might need a platform team)
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Think Spinoff
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twilio
@ \ Microservice
Monolith / Team
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Technical Implementation
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People operate the control plane
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Guiding goal: make our team productive

Tools for Generalists

e Generalist UX !=Specialist UX
e Specialist: All the things

e Generalist: Simple, Complete, Discoverable L
Tools for Education

0 ¢
e Build on familiar concepts ?%/}

e Safe defaults
e Greatfeedback

Tools for Autonomous Developers

e Fit multiple processes
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The Datawire Story...

e We have been building cloud apps as microservices since 2015

e Way too smallto have an actual dedicated ops / platform engineer
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The Datawire Story...

e But...! Good news I did thatin a previous life.

e Problem...! ’'m supposed to be writing product code.
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The Datawire Story...

| wanted to do self-service so any developer could scratch their own itch without
bugging me.
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Some design considerations...

e Polyglot programming shop

e Lots of different toolchains

e Distributed-ish engineering organization

e Not everyone has a strong background in microservices and infrastructure

e Several mission critical services
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The Datawire Story...

Also | wanted to do it “right”... so | architected the shit out the problem with tools!

Spinnaker

EC2
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... Actual Reaction D:
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Late 2015... 2016...

Change was slow and painful before adopting better starting principles...
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It’s about the people and process, dummy

e Turnsoutitisnotatooling problem...
e Itisapeopleand process problem...

e Engineers hate adopting new tools when the reason is not compelling...
especially if the new tools make their life harder.

e Allthetoolingin the world does not stop people from continuing their existing
behaviors...

e Everytool has a cost because every tool can and will be used slightly differently
by different people.
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“Did you read the README?” ~ “No, but...”

e AREADME isn’t enough.
e Developers are bad at RTFM and WTFM.

e Lots of arguments over people doing things
differently from how the README stated...

e Lots of arguments also over people not
knowing how to do things because the
README did not state anything about <X>.
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Back to the drawing board...

e We wanted a common build/deployment mechanism that would work for
everyone and anything (including CI, multiple languages, etc.)

e Started with Docker as it gave a common way to package and ship code.

e Kubernetes had been on my radar since 2014 but seemed finally ready for mass
adoption at this point so we picked that to run containers.
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Our Kubernetes Journey...

e We built tools based on two things:
a. Pain
b. Common patterns we discovered across all our repositories
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Step 1: Provide fast repeatable builds for everyone

docker et

FORGE.SH

‘
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1. Codeachangeonabranch (e.g. dev/awesome-feature)

2. Package the build toolchain into the Docker image itself!

3. Runasingle command and a new Docker image is built... no need to setup tools
on developers machines. Build process is codified into Dockerfile.



Step 1: | said everyone and | meant everyone...

FScala

RGradle
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Step 1: Provide fast repeatable builds for everyone

dOCker FORGE.SH
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1. Tools often forget about making compiled languages compile quickly...

2. Forge assists Docker and ensures things like build caches and incremental
compilation work across multiple runs:)
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Step 2: Provide fast self-service deploy

R

FORGE.SH

e Commit (or don’t commit) a change on a branch (e.g. dev/awesome-feature)

e Runcommand and presto...! Updated code is running on the cluster without
disturbing any other deployment.

e Support any number of parallel deployments of the same codebase
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Step 1 +2 Recap

e Docker and Kubernetes provide the backbone of build and deployment.

e We found ourselves mostly doing the same thing (docker build ...,

kubectl [apply|create] ...)sowe codifieditinto toolsthatwork fast
and have a small learning surface area for devs.

e Nothing “magical” about what the tools do and they can be easily bypassed if
necessary.
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Step 3: Make it easy to reach the changed code
&

&@ envoy - &@;/

GETAMBASSADOR.IO

e Add a little metadata to a Kubernetes service manifest

e Ambassador listens and picks up change and configures Envoy

e Makes it super easy to do stuff like expose a branch (dev/awesome-feature)
as https://dev-awesome-feature.datawire.io



https://dev-awesome-feature.datawire.io

Perfect?
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Hell no.

(But it’s soooooo much better than before)
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What’s left?

e Self-service bootstrapping

e Self-service stateful infrastructure

e Self-service external to Kubernetes infrastructure (e.g. Amazon RDS)

e Monitoring And Logging
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All the Things
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Capabilities aren’t Enough, UX Matters
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Process and People factors drive the UX
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Build the tools your teams need now

Tools for Generalists

e Generalist UX !=Specialist UX
e Generalist: Simple, Complete, Discoverable

Tools for Education

e Build on familiar concepts
e Safe defaults
e Greatfeedback

Tools for Autonomous Developers

e Fit multiple processes

datawire.io
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Thank you!

Tweet Us!

@datawireio
@thebiglombowski
@rschloming

Email Us!

rhs@datawire.io
plombardi@datawire.io
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https://www.datawire.io/faster

