
Scale Kubernetes to Support 50,000 Services 
 

Haibin Michael Xie, Senior Staff Engineer/Architect, Huawei 
Quinton Hoole, Technical Vice President, Huawei 

 
 



Agenda 

• Challenges while scaling services 

• Solutions and prototypes 

• Performance data 

• Q&A 

 



 
 
 
 
 
 
 

Master 
 
 
 
 
 
 
 
 
 
 
 

What are the Challenges while Scaling Services 

• Control plane (Master, kubelet, 
kube-proxy) 

API Server 
Controller 
Manager 

Scheduler 

 
 
 
 
 
 
 
 
 

Node 
 
 
 

KubeProxy 
… 

ETCD 

Kubelet 

Load Balancer 

• Deploy services and pods 

• Propagate endpoints 

• Add/remove services in load balancer 

• Accessing services 

• Data plane (load balancer) 

Pod Pod Pod 

 
 
 
 
 
 
 
 
 

Node 
 
 
 

KubeProxy Kubelet 

Load Balancer 

Pod Pod Pod 



API Server 
 
 
 
 
 
 
 
 
 
 

Control Plane 

ETCD 
 
 
 
 
 
 
 

services 

Controller 
Manager 

 
 
 
 

pods 

endpoints 

Endpoints 
Controller 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy …  … 

N nodes per cluster 
M pods per second 

QPS: N*M endpoints per second 

Service deployed 

Pod deployed and 
scheduled 



Endpoints 

/registry/services/endpoints/default/my-service 

/registry/services/specs/default/my-service 



API Server 
 
 
 
 
 
 
 
 
 
 

Control Plane 

ETCD 
 
 
 
 
 
 
 

services 

Controller 
Manager 

 
 
 
 

pods 

endpoints 

Endpoints 
Controller 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy …  … 

N nodes per cluster 
M pods per second 

QPS: N*M endpoints per second 

Load: N*M*(M+1)/2 addresses per second 



Control Plane Solution 

1. Partition endpoints object into multiple objects 
• Pros: reduce Endpoints object size 

• Cons: increase # of objects and requests 

2. Central load balancer 
• Pros: reduce connections and requests to API server 

• Cons: one more hop in service routing, require strong HA, limited LB scalability 

3. Batch creating/updating endpoints 
• Timer based, no change to data structure in ETCD 

• Pros: reduce QPS 

• Cons: E2E latency is increased by Batch interval 



API Server 
 
 
 
 
 
 
 
 
 
 

Control Plane Solution 

ETCD 
 
 
 
 
 
 
 

services 

Controller 
Manager 

 
 
 
 

pods 

endpoints 

Endpoints 
Controller 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy 

 
 
 
 
 
 
 

Node 
 
 
 
 

KubeProxy …  … 

QPS: N*M per second 
Load: N*M*(M+1)/2 addresses per second 

Timer and batch QPS: N*M per second 
Load: N*M*(M+1)/2 addresses per second 

QPS: N per second 
Load: N*M addresses per second 

N nodes per cluster 
M pods per second 



Batch Processing Requests Reduction  

One batch per 0.5 second. 

 QPS：reduced 98%  

 

Pods per 
Service  

Number of 
Service  

EndPoints Controller # of Requests 

Before After Reduction 

10 

100 551 10 98.2% 

150 785 14 98.2% 

200 1105 17 98.5% 

Test setup: 

1 Master，4 slaves 

16 core 2.60GHz, 48GB RAM 
 



Batch Processing E2E Latency Reduction  

Latency： reduced 60+% 

 

Pods per 
Service  

Number of 
Service  

E2E Latency  (Second) 

Before  After Reduction 

10 

100 8.5 3.5 59.1% 

150 13.5 5.3 60.9% 

200 22.8 7.8 65.8% 



Data Panel 

• What is IPTables? 
• iptables is a user-space application that allows configuring Linux kernel 

firewall (implemented on top of Netfilter) by configuring chains and 
rules. 

• What is Netfilter? A framework provided by the Linux kernel that allows 
customization of networking-related operations, such as packet filtering, 
NAT, port translation etc. 

• Issues with IPTables as load balancer 
• Latency to access service (routing latency) 

• Latency to add/remove rule 
 



IPTables Example 
#    Iptables –t nat –L –n 
Chain PREROUTING (policy ACCEPT) 
target     prot opt source               destination          
KUBE-SERVICES  all  --  anywhere             anywhere             /* kubernetes service portals */  1 
DOCKER     all  --  anywhere             anywhere             ADDRTYPE match dst-type LOCAL 
 
Chain KUBE-SEP-G3MLSGWVLUPEIMXS (1 references)  4 
target     prot opt source               destination          
MARK       all  --  172.16.16.2          anywhere             /* default/webpod-service: */ MARK set 0x4d415351 
DNAT       tcp  --  anywhere             anywhere             /* default/webpod-service: */ tcp to:172.16.16.2:80 
 
Chain KUBE-SEP-OUBP2X5UG3G4CYYB (1 references) 
target     prot opt source               destination          
MARK       all  --  192.168.190.128      anywhere             /* default/kubernetes: */ MARK set 0x4d415351 
DNAT       tcp  --  anywhere             anywhere             /* default/kubernetes: */ tcp to:192.168.190.128:6443 
 
Chain KUBE-SEP-PXEMGP3B44XONJEO (1 references)  4 
target     prot opt source               destination          
MARK       all  --  172.16.91.2          anywhere             /* default/webpod-service: */ MARK set 0x4d415351 
DNAT       tcp  --  anywhere             anywhere             /* default/webpod-service: */ tcp to:172.16.91.2:80 
 
Chain KUBE-SERVICES (2 references)  2 
target     prot opt source               destination          
KUBE-SVC-N4RX4VPNP4ATLCGG  tcp  --  anywhere             192.168.3.237        /* default/webpod-service: cluster IP */ tcp dpt:http 
KUBE-SVC-6N4SJQIF3IX3FORG  tcp  --  anywhere             192.168.3.1          /* default/kubernetes: cluster IP */ tcp dpt:https 
KUBE-NODEPORTS  all  --  anywhere             anywhere             /* kubernetes service nodeports; NOTE: this must be the last rule in this chain */ ADDRTYPE match dst-type 

LOCAL 
 
Chain KUBE-SVC-6N4SJQIF3IX3FORG (1 references) 
target     prot opt source               destination          
KUBE-SEP-OUBP2X5UG3G4CYYB  all  --  anywhere             anywhere             /* default/kubernetes: */ 
 
Chain KUBE-SVC-N4RX4VPNP4ATLCGG (1 references)  3 
target     prot opt source               destination          
KUBE-SEP-G3MLSGWVLUPEIMXS  all  --  anywhere             anywhere             /* default/webpod-service: */ statistic mode random probability 0.50000000000 
KUBE-SEP-PXEMGP3B44XONJEO  all  --  anywhere             anywhere             /* default/webpod-service: */ 
 
 



IPTables Service Routing Performance 

  
  
  
  
  
  
  
  

 

1 Service (µs) 1000 Services (µs)  10000 Services (µs) 50000 Services (µs) 

First  Service 575 614 1023 1821 

Middle Service 575 602 1048 4174 

Last Service 575 631 1050 7077 

  
  
  
  
  
  
  
  
  

In this test, there is one entry per service in KUBE-SERVICES chain. 

Where is latency generated? 
• Long list of rules in a chain 

• Enumerate through the list to find a service and pod 



Latency to Add IPTables Rules 

• Where is the latency generated? 
• not incremental 

• copy all rules 

• make changes 

• save all rules back 

• IPTables locked during rule update 

• Time spent to add one rule when there are 5k services (40k rules): 11 
minutes 

• 20k services (160k rules): 5 hours 



Data Plane Solution 

 

 

 

• Re-struct IPTables using search tree (Performance benefit) 

• Replace IPTables with IPVS (Performance and beyond) 



 
VIP 

 

Restruct IPTables by Search Tree 

10.10.0.0/16 

10.10.1.0/24 

VIP: 10.10.1.5 VIP:10.10.1.100 

10.10.100.0/24 

VIP:10.10.100.1 

Service VIP range: 10.10.0.0/16 
CIDR list = [16,  24], defines tree layout 

Create 3 services: 10.10.1.5, 10.10.1.100, 10.10.100.1 

Search tree based service routing time complexity:               , m is tree depth 

Original service routing time complexity: O(n) 



What is IPVS 

• Transport layer load balancer which directs requests for TCP and UDP 
based services to real servers. 

• Same to IPTables, IPVS is built on top of Netfilter. 

• Support 3 load balancing mode: NAT, DR and IP Tunneling. 



IPVS vs. IPTables 

IPTables: 
• Operates tables provided by linux firewall 

• IPTables is more flexible to manipulate package at different stage: Pre-routing, 
post-routing, forward, input, output. 

• IPTables has more operations: SNAT, DNAT, reject packets, port translation etc. 

Why using IPVS? 
• Better performance (Hashing vs. Chain) 

• More load balancing algorithm 
• Round robin, source/destination hashing. 

• Based on least load, least connection or locality, can assign weight to server. 

• Support server health check and connection retry 

• Support sticky session 

 



IPVS Load Balancing Mode in Kubernetes 

• Not public released yet 

• No Kubernetes behavior change, complete functionalities: external IP, 
nodePort etc 

• Kube-proxy startup parameter mode=IPVS, in addition to original modes: 
mode=userspace and mode=iptables 

• Kube-proxy lines of code: 11800 

• IPVS mode adds 680 lines of code, dependent on seasaw library 

 



IPVS vs. IPTables Latency to Add Rules 

# of Services 1 5,000 20,000 

# of Rules 8 40,000 160,000 

IPTables 2 ms 11 min 5 hours 

IPVS 2 ms 2 ms 2 ms 

Measured by iptables and ipvsadm, observations: 
  In IPTables mode, latency to add rule increases significantly when # of service increases 
  In IPVS mode, latency to add VIP and backend IPs does not increase when # of service increases 



IPVS vs. IPTables Network Bandwidth 

Measured by qperf 
Bandwidth, QPS, Latency have similar pattern 
Env: 1 master, 4 slaves, 8 pods, all services use these 8 pods 
Each service exposes 4 ports (4 entries in KUBE-SERVICES chain) 

ith service first first last first last first last first last first last 

# of services 1 1000 1000 5000 5000 10000 10000 25000 25000 50000 50000 

Bandwidth, IPTables (MB/S) 66.6 64 56 50 38.6 15 6 0 0 0 0 

Bandwidth, IPVS (MB/S) 65.3 61.7 55.3 53.5 53.8 43 43.5 30 28.5 24 23.8 



More Perf/Scalability Work Done 

• Scale nodes and pods in single cluster 

• Reduce E2E latency of deploying pods/services 

• Increase pod deployment throughput 

• Improve scheduling performance 

 



Thank You 
 

quinton.hoole@huawei.com 

haibin.michael.xie@huawei.com 


