OpenTracing Isn't just Tracing:
Measure Twice, Instrument Once

Ted Young, OpenTracing + LightStep

March 29, 2017
Kubecon Berlin

Part I:

Why Care About Tracing?

Microservices: 1 story, N storytellers

Microservices are here to stay: decoupled eng teams, Cl, CD, etc

... but they break legacy monitoring tools: great monitoring tells stories
about your system. Process-scoped monitoring can never do that.

L1 j_l_\- 'i

'-‘é::i'l

-
L

I

How do you “tell stories” about a modern architecture?
Distributed Tracing: consider all requests from all services, then connect the dots

(I; OPENTRACING

Great... So why isn’t tracing ubiquitous?

Tracing instrumentation has been too hard.

Lock-in is unacceptable: instrumentation must be decoupled from vendors
Monkey patching insufficient: instrumentation is by humans, for humans
Inconsistent APIs: tracing semantics must not be language-dependent

Handoff woes: tracing libs in Project X don't hand-off to tracing libs in Project Y

(I; OPENTRACING

Part Il

Enter OpenTracing

OpenTracing in a nutshell

OpenTracing addresses the instrumentation problem.

- Open and standardized APl under the CNCF.

- Useful for a wide variety of instrumentation.

- Separates what you choose to instrument from what
you choose to collect.

- Especially good for instrumenting OSS libraries and
frameworks.

(I; OPENTRACING

A young, fast-growing project

One year old! & Announced v1.0 specin August 2016

Tracer Implementations: Zipkin, Uber’s “Jaeger” Zipkin sibling, Hawkular,
Appdash, LightStep, and a few smaller tracing systems

4 lgﬂ () twilio

docker O OJOHent @
A

®.2, 44

Bloomberg

Some Companies using OpenTracing:

P

qgirbnb & ZENEFITS

Opentracing Architecture

g ParentSpan o ShanGontext/Baggage gnild Span a
.M_. log log log log
ﬁ ﬂliilll | =
log log

Spans - Basic unit of timing and causality. Can be tagged with key/value pairs.
Logs - Structured data recorded on a span.

Span Context - serializable format for linking spans across network
boundaries. Carries baggage, such as a request and client IDs.

Tracers - Anything that plugs into the OpenTracing API to record information.

ZipKin, LightStep, and Jaeger. But also metrics (Prometheus) and logging.
(I} OPENTRACING

Uses for OpenTracing

Logging - Easy to output to any logging tool, even from OSS components.
Metrics/Alerting - Measure based on tags, span timing, log data.

Context Propagation - Use baggage to carry request and user ID’s, etc.
Critical Path Analysis - Drill down into request latency in very high fidelity.

System Topology Analysis - Identify bottlenecks due to shared resources.

(I; OPENTRACING

Replaces Traditional Instrumentation

Logging Critical Path
Analysis

OpenTracing API

> Turnkey Tracing

i0S JavaScript Android

[Proxies, Load Balancers, and Gateways]

Inbound RPC

Spring,

Framework Django, GEvent context DropWizard,

Runnable

sqlAlchemy, cassandra,

Service Clients Kafka rabbitMQ

JDBC, JMS

Language Stack Python Golang Java

[Databases, Message Queues, and 3rd Party Services]

Part lll;

Prometheus Example

magine a world ... with faster access to donuts

(I; OPENTRACING

Simple Prometheus Integration

type PrometheusTracer struct {
component string
Latency *prometheus.SummaryVec
ErrorCount *prometheus.CounterVec

}

func (t *PrometheusTracer) RecordSpan(span basictracer.RawSpan) {

t.Latency
.WithLabelValues(span.Operation)
.Observe(float64(span.Duration))

if _, found := span.Tags["error"]; found {
t.ErrorCount
.WithLabelValues(t.component)
.Inc()

}

}
(I; OPENTRACING

Help us instrument the world

Network Libraries and service clients
Frameworks and runtimes
OpenTracing multiplexers

An OpenTracing — Prometheus bridge
Kubernetes + OpenTracing
OpenTracing specification itself

Gitter:

Github:

W= magenaratiornat

(I} OPENTRACING

https://gitter.im/opentracing/public
https://github.com/opentracing

Distributed Tracmg Salon 2017

Free Donuts. Thursday, 2:00 pm-3:20 pm. Room AO8
*also, Tracing 101 (interactive), Tracing Group Therapy, Tracing + k8s, and more!

(I; OPENTRACING

Thanks / Q&A

... and please be in touch

Ted Young
ted@lightstep.com / @tedsuooo

@opentracing

(Appendix Slides)

®0® /i () c(AL(Sa(QF ws(OQb(#L(Qo(NiFV(#L(#L(#L(DOAODe B I2(DLec(QelL2 C oL L L) zix lightstep

< C' | ® donutsalon.com:9411/traces/522f094867 1ef23c?serviceName=donut-fryer * @ 2 %

Duration: Services:) Depth: €) Total Spans: @ @

Expand All | Collapse All || Filter Servi...
o T T BT

Services 115.056ms 230.111ms 345.167ms 460.222ms 575.278ms

— 575.278ms : background_donut
— 575.253ms : make_donut
0.237ms : mix_batter
: 0413.795ms : fry_donut - : : «
E ® - . 0121.153ms : sprinkle_topping: cinnamon

e e '# LightStep X

lightstep

C' | ® app.lightstep.com/dev_bhs/trace?span_guid=4d8e7057be22 1bbe&at_micros=147862720262461 1#span-4d8e7057be921bbe QA @ £ *

get _donuts

Start time: Today at 9:46 AM

Expand all spans

Oms

1000ms

2000ms 3000ms

=] get_donuts

onut-browser

B '

B make_donut

donut-webserver

mix_batter

N ' (49.)

donut-mixer

fry_donut

a 63.3ms

donut-fryer

sprinkle_topping: chocolate

ry

T -

donut-topper

G 108ms

® 0 =~ Lghstep x \\R

C ® app.lightstep.com/dev_bhs/trace?span_guid=4d8e7057be921bbe&at_micros=147862720262461 1#span-4d8e7057be921bbe Q‘i}‘ ® 2 ¥ 5 0 i

donut-webserver

mix_batter
donut-mixer
- frydoput

donut-fryer

Span

Operation: fry_donut

Duration: 1.51s

Tracer

Component: donut-fryer

Platform: go go1.6.2

Library: v0.9.1

sprinkle_topping: chocolate
donut-topper

Tags
parent_span_guid: 4d8e7057be921bbe
Logs

[S] +0s Waiting for lock behind 5 transactions

"glazed (daemon-donuts)”,
"cinnamon (client 4390)",
"chocolate (daemon-donuts)”,
"cinnamon (client 4390)",
"cinnamon (client 4390)"

+1.13s Acquired lock with 1 transactions waiting behind

+1.13s starting to fry: cinnamon (client 4390)

m 108ms

Concurrency in Pictures

“The Simple [Inefficient] Thing”

Distributed Concurrency
—a
—a

Basic Concurrency

[. 0 . =
—=a —=a ; -
—a —a — >

-. -q

Async Concurrency

oy 5 L .:
[O 3 -

(I; OPENTRACING

The OpenTracing data model

Tracer

Span

SpanContext

Typically one per process

StartSpan(): where every Span
begins

0 or more “References” (e.g.,
parents), identified via
SpanContexts

Injecting SpanContexts into
“carrier” propagators

Extracting SpanContexts from
“carrier” propagators

Start and Finish timestamps

Zero or more key:value “tags”
(usually for filtering and/or
aggregation)

Zero or more timestamped
key:value logs (usually for,
well, logging)

Set/Get Baggage(*)
Get SpanContext

TL;,DR: the “nodes” in the DAG
Read-only access to Baggage

Mostly opaque; this is where
implementations store
span_id, etc

(No timestamps!)

(I; OPENTRACING

IPC propagation without tight coupling!

Instrumentation: Wrap an IPC data structure with an OpenTracing “carrier”

carrier := opentracing.HTTPHeadersCarrier(httpReq.Header)

Instrumentation: Pass a SpanContext and the carrier to Inject()

tracer.Inject(currentSpan.context(), opentracing.HTTPHeaders, carrier)

Tracer Impl: Confirm the type of the SpanContext
zipkinSpanContext, ok := (ZipkinSpanContext)SpanContext

Tracer Impl: Use the Inject() format to determine how to encode data in the carrier

if format == opentracing.HTTPHeaders {
carrier.Put(“X-B3-TraceId”, zipkinSpanContext.HexTraceId())
. etc ...
}

(I; OPENTRACING

Pick your battles

OpenTracing scope

Standard instrumentation APIs for...

Standard encoding formats for...

(1)

)

©)

(4)

®)

Benefit / Feature enabled span inter-process active span in-band context |out-of-band trace

by standardization management propagation management encoding data

Tracing AP consistency Required Required Helpful N/A N/A

across platforms

Keep instrumentation

deps small for OSS Required Required N/A N/A N/A

projects

Avoid lock-in: easily switch

all services from tracing Required Required Helpful N/A Helpful

vendor A to tracing vendor
B

(I} OPENTRACING

More about Baggage (see the PivotTracing paper)

{ Client Span }

button=buy

[Frontend Span }

button=buy, exp_id=57

/\

[Ad Span } Content Span }

button=buy, exp_id=57 button=buy, exp_id=57

Problem: hf)w to aggregate Shard A Span Shard B Span
disk writes in Cassandra by button=buy, exp_id=57 I

“button” type (or experiment [[[[{ S

N\

N\

id, etc, etc)?
Cassandra Spans }

button=buy, exp_id=57

http://pivottracing.io/

OpenTracing architecture

~— microservice process N

application logic

web frameworks I \
control-flow packages Vu

Z1PKIN

== LIGHTSTEP

Jaeger

OpenTracing
RPC libraries API

TRACER

Logging and metrics

- J

;

tracing infrastructure

