
Ted Young, OpenTracing + LightStep

March 29, 2017
Kubecon Berlin

OpenTracing Isn't just Tracing:
Measure Twice, Instrument Once

Part I:
Why Care About Tracing?

Microservices are here to stay: decoupled eng teams, CI, CD, etc

… but they break legacy monitoring tools: great monitoring tells stories
about your system. Process-scoped monitoring can never do that.

Microservices: 1 story, N storytellers

How do you “tell stories” about a modern architecture?
Distributed Tracing: consider all requests from all services, then connect the dots

Tracing instrumentation has been too hard.

Lock-in is unacceptable: instrumentation must be decoupled from vendors

Monkey patching insufficient: instrumentation is by humans, for humans

Inconsistent APIs: tracing semantics must not be language-dependent

Handoff woes: tracing libs in Project X don’t hand-off to tracing libs in Project Y

Great… So why isn’t tracing ubiquitous?

Part II:
Enter OpenTracing

OpenTracing addresses the instrumentation problem.

- Open and standardized API under the CNCF.
- Useful for a wide variety of instrumentation.
- Separates what you choose to instrument from what

you choose to collect.
- Especially good for instrumenting OSS libraries and

frameworks.

OpenTracing in a nutshell

One year old! ı Announced v1.0 spec in August 2016

Tracer Implementations: Zipkin, Uber’s “Jaeger” Zipkin sibling, Hawkular,
Appdash, LightStep, and a few smaller tracing systems

Some Companies using OpenTracing:

A young, fast-growing project

Opentracing Architecture

Spans - Basic unit of timing and causality. Can be tagged with key/value pairs.

Logs - Structured data recorded on a span.

Span Context - serializable format for linking spans across network
boundaries. Carries baggage, such as a request and client IDs.

Tracers - Anything that plugs into the OpenTracing API to record information.
ZipKin, LightStep, and Jaeger. But also metrics (Prometheus) and logging.

log log log

log log

log

Parent Span Span Context / Baggage

Child

Child

Child Span

Uses for OpenTracing
Logging - Easy to output to any logging tool, even from OSS components.

Metrics/Alerting - Measure based on tags, span timing, log data.

Context Propagation - Use baggage to carry request and user ID’s, etc.

Critical Path Analysis - Drill down into request latency in very high fidelity.

System Topology Analysis - Identify bottlenecks due to shared resources.

Replaces Traditional Instrumentation

Logging

Metrics

Critical Path
Analysis

OpenTracing API

 Turnkey Tracing

Part III:
Prometheus Example

Imagine a world … with faster access to donuts

type PrometheusTracer struct {
 component string
 Latency *prometheus.SummaryVec
 ErrorCount *prometheus.CounterVec
}

Simple Prometheus Integration

func (t *PrometheusTracer) RecordSpan(span basictracer.RawSpan) {

 t.Latency
 .WithLabelValues(span.Operation)
 .Observe(float64(span.Duration))

 if _, found := span.Tags["error"]; found {
 t.ErrorCount
 .WithLabelValues(t.component)
 .Inc()
 }
}

Help us instrument the world
- Network Libraries and service clients
- Frameworks and runtimes
- OpenTracing multiplexers
- An OpenTracing → Prometheus bridge
- Kubernetes + OpenTracing
- OpenTracing specification itself
- Gitter: gitter.im/opentracing/public
- Github: github.com/opentracing

https://gitter.im/opentracing/public
https://github.com/opentracing

Distributed Tracing Salon 2017

Free Donuts. Thursday, 2:00 pm–3:20 pm. Room A08
*also, Tracing 101 (interactive), Tracing Group Therapy, Tracing + k8s, and more!

Thanks / Q&A
… and please be in touch

@opentracing

Ted Young
ted@lightstep.com / @tedsuooo

(Appendix Slides)

Concurrency in Pictures
Distributed Concurrency

“The Simple [Inefficient] Thing”

Basic Concurrency

Async Concurrency

Distributed Concurrency

Tracer Span SpanContext

Typically one per process

StartSpan(): where every Span
begins

0 or more “References” (e.g.,
parents), identified via
SpanContexts

Injecting SpanContexts into
“carrier” propagators

Extracting SpanContexts from
“carrier” propagators

Start and Finish timestamps

Zero or more key:value “tags”
(usually for filtering and/or
aggregation)

Zero or more timestamped
key:value logs (usually for,
well, logging)

Set/Get Baggage(*)

Get SpanContext

TL;DR: the “nodes” in the DAG

Read-only access to Baggage

Mostly opaque; this is where
implementations store
span_id, etc

(No timestamps!)

The OpenTracing data model

Instrumentation: Wrap an IPC data structure with an OpenTracing “carrier”

carrier := opentracing.HTTPHeadersCarrier(httpReq.Header)

Instrumentation: Pass a SpanContext and the carrier to Inject()

tracer.Inject(currentSpan.context(), opentracing.HTTPHeaders, carrier)

Tracer Impl: Confirm the type of the SpanContext

zipkinSpanContext, ok := (ZipkinSpanContext)SpanContext

Tracer Impl: Use the Inject() format to determine how to encode data in the carrier

if format == opentracing.HTTPHeaders {

 carrier.Put(“X-B3-TraceId”, zipkinSpanContext.HexTraceId())

 … etc …
}

IPC propagation without tight coupling!

Pick your battles
OpenTracing scope

Standard instrumentation APIs for... Standard encoding formats for...

Benefit / Feature enabled
by standardization

(1)
span

management

(2)
inter-process
propagation

(3)
active span

management

(4)
in-band context

encoding

(5)
out-of-band trace

data

Tracing API consistency
across platforms Required Required Helpful N/A N/A

Keep instrumentation
deps small for OSS
projects

Required Required N/A N/A N/A

Avoid lock-in: easily switch
all services from tracing
vendor A to tracing vendor
B

Required Required Helpful N/A Helpful

More about Baggage (see the PivotTracing paper)
Client Span

button=buy

Frontend Span
button=buy, exp_id=57

Ad Span
button=buy, exp_id=57

Content Span
button=buy, exp_id=57

Shard A Span
button=buy, exp_id=57

Shard B Span
button=buy, exp_id=57

Cassandra Spans
button=buy, exp_id=57Cassandra Spans

button=buy, exp_id=57Cassandra Spans
button=buy, exp_id=57Cassandra Spans

button=buy, exp_id=57Cassandra Spans
button=buy, exp_id=57

Problem: how to aggregate
disk writes in Cassandra by
“button” type (or experiment
id, etc, etc)?

http://pivottracing.io/

OpenTracing architecture

OpenTracing
API

application logic

web frameworks

control-flow packages

RPC libraries

Logging and metrics

tracing infrastructure

main()

T R A C E R

J a e g e r

microservice process

