Load Testing Kubernetes

How To Optimize Your Cluster Resource
Allocation in Production
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Case Study:

Links Service

e Preexisting endpoint in our monolith
e Serves the number of times a link is
shared within Buffer
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e Settled on a simple design using Node
and DynamoDB
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Case Study:

Links Service

e Deployed the service to Kubernetes (4
replicas)

e Manually verified that the service was
operational
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1% =» 10%
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1% =» 10% =» 50%
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1% =» 10% = 3
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Case Study:

Links Service

e Scaled up replicas (5x - 20 pods)
e Helped, but pods still repeatedly dying
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Back to 0%
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Case Study:

Links Service

e | had copied and pasted a Deployment
from another service

e The Deployment included resource limits

e kubectl describe was reporting
OOMK1illed
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Resource Limits

e Limits can be set on both CPU and memory utilization
e Pods run with unbounded CPU and memory limits
e Kubernetes will restart containers when limits are exceeded

(¢



How do we optimally set
CPU and Memory limits?
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Optimal Limits

e Pods have enough resources to complete
their task
e Nodes run maximum number of pods
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Under/Over/Even
Resource Allocation
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Under-
allocation




Overallocation




Overallocation is tricky
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It becomes a problem
when you scale up replicas
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That's one extra pod that
could be running
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Kubernetes Monitoring
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Setting Limits

e Goal: Understand what one pod can handle
e Start with a very conservative set of limits
e Only change one thing at time and observe changes

# limits might look something like
replicas: 1

cpu: 100m # 1/10th of a core
memory: 50Mi # 50 Mebibytes
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Testing Strategies
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Demo

Setting Limits For etcd
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Keep A Fail Log
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Some Observed

Failure Modes

Memory is slowly increasing

CPU is pegged at 100%

500s

High response times

Large variance in response times
Dropped Requests
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Case Study: Links Service

lLessons Learned
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It's About Increasing
Predictability

And Getting More Sleep
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Looking Ahead:

Kubernetes

e Amazing at monitoring a cluster
e Gap when observing a pod or container

(¢



Questions?
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