Load Testing Kubernetes

How To Optimize Your Cluster Resource
Allocation in Production

(¢

Harrison Harnisch

Senior Software Engineer @ Bu

@hjharnis

fer

(¢

https://twitter.com/hjharnis

Case Study:

Links Service

e Preexisting endpoint in our monolith
e Serves the number of times a link is
shared within Buffer

(¢

e Settled on a simple design using Node
and DynamoDB

Case Study:

Links Service @ .

Case Study:

Links Service

e Deployed the service to Kubernetes (4
replicas)

e Manually verified that the service was
operational

(¢

1%

(¢

1% =» 10%

(¢

1% =» 10% =» 50%

(¢

1% =» 10% = 3

(¢

Case Study:

Links Service

e Scaled up replicas (5x - 20 pods)
e Helped, but pods still repeatedly dying

(¢

Back to 0%

(¢

Case Study:

Links Service

e | had copied and pasted a Deployment
from another service

e The Deployment included resource limits

e kubectl describe was reporting
OOMK1illed

(¢

Resource Limits

e Limits can be set on both CPU and memory utilization
e Pods run with unbounded CPU and memory limits
e Kubernetes will restart containers when limits are exceeded

(¢

How do we optimally set
CPU and Memory limits?

(¢

Optimal Limits

e Pods have enough resources to complete
their task
e Nodes run maximum number of pods

(¢

Under/Over/Even
Resource Allocation

(¢

Under-
allocation

Overallocation

Overallocation is tricky

(¢

It becomes a problem
when you scale up replicas

(¢

That's one extra pod that
could be running

(¢

Even

Kubernetes Monitoring

(¢

kubernetes Monitoring

Node Kubelet

cAdvisor

Node

Storage
Backend

(¢

Heapster

cAdvisor

Node

Heapster

| Heapsier
Kubelet -

cAdvisor

Node

Heapster

cAdvisor

Node

kubernetes Monitoring

Node Kubelet

cAdvisor

Node

Storage
Backend

(¢

Setting Limits

e Goal: Understand what one pod can handle
e Start with a very conservative set of limits
e Only change one thing at time and observe changes

limits might look something like
replicas: 1

cpu: 100m # 1/10th of a core
memory: 50Mi # 50 Mebibytes

(¢

Testing Strategies

(¢

Times Details Bandwidth Distribution

17500 ms
15000 ms

12500 ms

Ramp Up Test -

7500 ms 24 clients/sec active from 00:13 to 00:14 *

5000 ms

2500 ms

Oms
00:05 00:10 00:15 00:20

(¢

) y P Watch simulation
Times Details Bandwidth Distribution

5000 ms 500

4000 ms \—’\/_’V’\//\\ 400

. 3000 ms 300
u | atlon est o b
1000 ms 100
0ms 1]
00:50 01:40 02:30 03:20 04:10 05:00 05:50 06:40
— Clients — Average Time

(¢

Demo

Setting Limits For etcd

(¢

Keep A Fail Log

(¢

Some Observed

Failure Modes

Memory is slowly increasing

CPU is pegged at 100%

500s

High response times

Large variance in response times
Dropped Requests

(¢

Case Study: Links Service

lLessons Learned

(¢

It's About Increasing
Predictability

And Getting More Sleep

(¢

Looking Ahead:

Kubernetes

e Amazing at monitoring a cluster
e Gap when observing a pod or container

(¢

Questions?

(¢

