
Load Testing Kubernetes
How To Optimize Your Cluster Resource
Allocation in Production



Harrison Harnisch
Senior Software Engineer @ Bu�er

@hjharnis

https://twitter.com/hjharnis


Case Study:
Links Service

Preexisting endpoint in our monolith
Serves the number of times a link is
shared within Bu�er



Case Study:
Links Service

Settled on a simple design using Node
and DynamoDB

 



Case Study:
Links Service

Deployed the service to Kubernetes (4
replicas)
Manually veri�ed that the service was
operational



1%



1% ➡   10%



1% ➡   10% ➡   50%



1% ➡   10% ➡   🔥



Case Study:
Links Service

Scaled up replicas (5x - 20 pods)
Helped, but pods still repeatedly dying



Back to 0%



Case Study:
Links Service

I had copied and pasted a Deployment
from another service
The Deployment included resource limits
kubectl describe was reporting
OOMKilled



Resource Limits
Limits can be set on both CPU and memory utilization
Pods run with unbounded CPU and memory limits
Kubernetes will restart containers when limits are exceeded



How do we optimally set
CPU and Memory limits?



Optimal Limits
Pods have enough resources to complete
their task
Nodes run maximum number of pods



Under/Over/Even
Resource Allocation



Under-
allocation



Overallocation



Overallocation is tricky



It becomes a problem
when you scale up replicas



vs



That's one extra pod that
could be running



Even



Kubernetes Monitoring





cAdvisor



Kubelet



Heapster





Setting Limits
Goal: Understand what one pod can handle
Start with a very conservative set of limits
Only change one thing at time and observe changes

# limits might look something like
replicas: 1
...
cpu: 100m # 1/10th of a core
memory: 50Mi # 50 Mebibytes



Testing Strategies



Ramp Up Test



Duration Test



Demo
Setting Limits For etcd



Keep A Fail Log



Some Observed
Failure Modes

Memory is slowly increasing
CPU is pegged at 100%
500s
High response times
Large variance in response times
Dropped Requests



Case Study: Links Service
Lessons Learned



It's About Increasing
Predictability
And Getting More Sleep



Looking Ahead:
Kubernetes

Amazing at monitoring a cluster
Gap when observing a pod or container



Questions?


