
Autoscaling in Kubernetes
Marcin Wielgus, Senior Software Engineer, Google

Autoscaling in Kubernetes
Marcin Wielgus, Senior Software Engineer, Google

How many?“
”

I don’t know“
”

I think I need...“
”

Avg. utilization
How big is it?

15% utilization
Are we so rich?

Why to overprovision?
● Lack of the knowledge of the real use.

● Hard to change the deployment.

● Lack of automation.

Autoscaling
Automatically adapt to the current

needs.

Autoscaling in Kubernetes

Horizontal Pod
Autoscaler

Controls the number of
replicas in deployments.

Cluster Autoscaler

Controls the number of
nodes in the cluster.

Vertical Pod Autoscaler

Controls the amount of
requested CPU and
Memory for a Pod.

Replica Count
And Horizontal Pod Autoscaler

Autoscaling replica count
● Maintain a decent load.

● Ensure needed redundancy.

● Operate within your quota.

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

85%

90%

93%

88%

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

85%

90%

93%

88%

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

68%

72%

71%

69%

73%

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

● If pods are barely loaded then stopping pods will
free some resources and the deployment should
still be ok..

42%

40%

50%

45%

39%

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

● If pods are barely loaded then stopping pods will
free some resources and the deployment should
still be ok.

42%

40%

50%

45%

39%

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

● If pods are barely loaded then stopping pods will
free some resources and the deployment should
still be ok.

51%

57%

50%

55%

Proprietary + Confidential

Maintaining the decent load
● If pods are heavily loaded then starting new pods

may bring average load down.

● If pods are barely loaded then stopping pods will
free some resources and the deployment should
still be ok.

● Specify the target for the load and try to be as
close as possible to it.

51%

50%

55%

57%

TARGET

Replica Count

Replica Count
● Pod 1 = 70%

● Pod 2 = 80%

● Target = 50%

Replica Count
● Pod 1 = 70%

● Pod 2 = 80%

● Target = 50%

● Sum = 150%

● Replica Count => 3.

What is usage?

Other Details
● Margins

● Ready/unready pods

● Missing or broken metrics

● Spikes

HPA - how to enable
$ kubectl autoscale

deployment foo-app
--min=2 --max=10
--cpu-percent=70

deployment "foo-app" autoscaled

HPA Architecture

Kubelet

Kubelet

Kubelet

Heapster MMA

Controller Manager

HPA
Controller

HPA Best Practices
● Declare requests for Pods.

HPA Best Practices
● Declare requests for Pods

● Set target well below 100%.

HPA Best Practices
● Declare requests for Pods

● Set target well below 100%.

● Target 70% gives you:

HPA Best Practices
● Declare requests for Pods

● Set target well below 100%.

● Target 70% gives you:

○ Large window for traffic increase within the

currently running pods 70%

HPA Best Practices
● Declare requests for Pods

● Set target well below 100%.

● Target 70% gives you:

○ Large window for traffic increase within the

currently running pods

○ Ability to have >30% more replicas after

the first HPA iteration

70%

HPA Best Practices
● Declare requests for Pods

● Set target well below 100%.

● Target 70% gives you:

○ Large window for traffic increase within the

currently running pods

○ Ability to have >30% more replicas after

the first HPA iteration

95%

HPA Best Practices
● Keep you pods and nodes healthy.

HPA Best Practices
● Keep you pods and nodes healthy.

● kubectl top

● kubectl describe hpa

Name: nginx
Namespace: default
Labels: <none>
Annotations: <none>
CreationTimestamp: Wed, 20 Mar 2017 07:26:46 +0000
Reference: Deployment/nginx
Metrics: (current / target)
 resource cpu on pods (as a percentage of request): 0% (0) / 70%
Min replicas: 1
Max replicas: 10
Events:
 FirstSeen LastSeen Count From SubObjectPath Type
Reason Message
 --------- -------- ----- ---- ------------- -------- ------

 11s 11s 1 horizontal-pod-autoscaler Normal
SuccessfulRescale New size: 1; reason: A
ll metrics below target

HPA Best Practices
● Keep you pods and nodes healthy.

● kubectl top

● kubectl describe hpa

● Custom metrics (like Queries Per Second)

HPA Best Practices
● Make sure that your requests are short and well

load balanced between pods

Node Count
and Cluster Autoscaler

Philosophy of Node Count

Philosophy of Node Count
● All pods should have a place to live.

Philosophy of Node Count
● All pods should have a place to live.

● Pods are created and deleted.

Philosophy of Node Count
● All pods should have a place to live.

● Pods are created and deleted.

● There is Horizontal Pod Autoscaler.

Philosophy of Node Count
● All pods should have a place to live.

● Pods are created and deleted.

● There is Horizontal Pod Autoscaler.

● Node count good for today may be bad
tomorrow.

Philosophy of Node Count
● All pods should have a place to live.

● Pods are created and deleted.

● There is Horizontal Pod Autoscaler.

● Node count good for today may be bad
tomorrow.

● Nodes are expensive. Spendthrift is bad.

Philosophy of Node Count
● All pods should have a place to live.

● Pods are created and deleted.

● There is Horizontal Pod Autoscaler.

● Node count good for today may be bad
tomorrow.

● Nodes are expensive. Spendthrift is bad.

● Pods are important. Stinginess is bad.

Automation
is needed!

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

● If there is no enough resources then a new node
has to be added.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

● If there is no enough resources then a new node
has to be added.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

● If there is no enough resources then a new node
has to be added.

● If there are too many resources in the cluster then
some nodes should be removed.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

● If there is no enough resources then a new node
has to be added.

● If there are too many resources in the cluster then
some nodes should be removed.

Proprietary + Confidential

Basic Idea of Automation
● Pods are scheduled based on their declared

resource requests.

● If there is enough resources the pod is
scheduled.

● If there is no enough resources then a new node
has to be added.

● If there are too many resources in the cluster then
some nodes should be removed.

3000 ft view
Over Cluster Autoscaler.

Cluster Autoscaler
● Runs on the master node in a separate pod.

● Maintains API server watches on all nodes
and pods in the cluster.

● Doesn’t use any node or pod-level metrics.

Nodes in Cluster Autoscaler
● Node groups:

○ MIGs (GCE/GKE)
○ Autoscaling Groups (AWS)
○ ScaleSets (Azure)

Main Loop Checks

Main Loop Checks
● If the cluster is in a good shape.

Main Loop Checks
● If the cluster is in a good shape.
● If there are unschedulable pods.

Main Loop Checks
● If the cluster is in a good shape.
● If there are unschedulable pods.
● Which of the node groups can be expanded

to accommodate these pods and expands
one of them.

Main Loop Checks
● If the cluster is in a good shape.
● If there are unschedulable pods.
● Which of the node groups can be expanded

to accommodate these pods and expands
one of them.

● How much the nodes are utilized and
which can be removed.

Main Loop Checks
● If the cluster is in a good shape.
● If there are unschedulable pods.
● Which of the node groups can be expanded

to accommodate these pods and expands
one of them.

● How much the nodes are utilized and
which can be removed.

● Which nodes could be removed for long
enough and removes one of them.

Unneeded nodes
According to current heuristic, a node can be
considered unneeded if:

Unneeded nodes
According to current heuristic, a node can be
considered unneeded if:

● Its utilization is below 50%.

Unneeded nodes
According to current heuristic, a node can be
considered unneeded if:

● Its utilization is below 50%.

● When all of the pods running on the node
can be moved elsewhere.

Unneeded nodes
According to current heuristic, a node can be
considered unneeded if:

● Its utilization is below 50%.

● When all of the pods running on the node can
be moved elsewhere.

● There are no kube-system pods

Unneeded nodes
According to current heuristic, a node can be
considered unneeded if:

● Its utilization is below 50%.

● When all of the pods running on the node can
be moved elsewhere.

● There are no kube-system pods

● There are no pods with local storage.

When to kill a node?
● Node was unneeded for 10 minutes.

● There was no scale up in the last 10 minutes.

Node killing process
● Pod Disruption Budget is used.

Node killing process
● Pod Disruption Budget is used.

● Graceful termination is honoured up to 1min.

Node killing process
● Pod Disruption Budget is used.

● Graceful termination is honoured up to 1min.

● VM running the node is removed by the
cloud provider.

Node killing process
● Pod Disruption Budget is used.

● Graceful termination is honoured up to 1min.

● VM running the node is removed by the cloud
provider.

● Empty nodes are killed in bulk

Node killing process
● Pod Disruption Budget is used.

● Graceful termination is honoured up to 1min.

● VM running the node is removed by the cloud
provider.

● Empty nodes are killed in bulk

● Non-empty - 1 at a time

CA Best Practices
● Do not manually modify single nodes within a node

group (e.g. DO NOT add extra labels)

CA Best Practices
● Do not manually modify single nodes within a node

group (e.g. DO NOT add extra labels)

● Declare requests for Pods.

CA Best Practices
● Do not manually modify single nodes within a node

group (e.g. DO NOT add extra labels)

● Declare requests for Pods.

● Use Pod Disruption Budgets.

CA Best Practices
● Do not manually modify single nodes within a node

group (e.g. DO NOT add extra labels)

● Declare requests for Pods.

● Use Pod Disruption Budgets.

● CA works best with homogenous clusters.

CA Best Practices
● kubectl describe configmap

● kubectl get events

$ kubectl describe configmap
 cluster-autoscaler-status
 --namespace=kube-system
[...]
Cluster-autoscaler status at 2017-03-27 14:08:11.175840061 +0000 UTC:
Cluster-wide:
 Health: Healthy (ready=3 unready=0 notStarted=0 longNotStarted=0
registered=3)
 LastProbeTime: 2017-03-27 14:08:10.731267279 +0000 UTC
 LastTransitionTime: 2017-03-27 13:57:17.347440444 +0000 UTC
 ScaleUp: InProgress (ready=3 registered=3)
 LastProbeTime: 2017-03-27 14:08:10.731267279 +0000 UTC
 LastTransitionTime: 2017-03-27 14:07:28.866558907 +0000 UTC
 ScaleDown: NoCandidates (candidates=0)
 LastProbeTime: 2017-03-27 14:08:11.175630989 +0000 UTC
 LastTransitionTime: 2017-03-27 13:57:17.665322299 +0000 UTC
NodeGroups:
 Name: https://content.googleapis.com/compute/v1/projects/...
 Health: Healthy (ready=2 unready=0 notStarted=0 longNotStarted=0 registered=2
cloudProviderTarget=4)
 LastProbeTime: 2017-03-27 14:08:10.731267279 +0000 UTC
 LastTransitionTime: 2017-03-27 13:57:17.347440444 +0000 UTC
 ScaleUp: InProgress (ready=2 cloudProviderTarget=4)
 LastProbeTime: 2017-03-27 14:08:10.731267279 +0000 UTC
 LastTransitionTime: 2017-03-27 14:07:28.866558907 +0000 UTC
 ScaleDown: NoCandidates (candidates=0)
 LastProbeTime: 2017-03-27 14:08:11.175630989 +0000 UTC
 LastTransitionTime: 2017-03-27 13:57:17.665322299 +0000 UTC

Still BETA?
What is missing?

What is missing to reach GA?

CA-friendly scheduler

The current one tries
to spread pods and
increases the number
of reschedulings.

Easier configuration

Especially for
non-GKE users.

More tests

Especially non trivial
failure scenarios.

Stable status info

Switch to
ComponentStatus.

+ User Feedback

What is missing to reach GA?

CA-friendly scheduler

The current one tries
to spread pods and
increases the number
of reschedulings.

Easier configuration

Especially for
non-GKE users.

More tests

Especially non trivial
failure scenarios.

Stable status info

Switch to
ComponentStatus.

+ User Feedback

Vertical Pod Autoscaling
What is that?

Vertical Pod autoscaler
● Goal - automatically set container requests.

● Design almost completed.

● Alpha Proof Of Concept expected in June 2017.

SIG-Autoscaling
Every Thursday 17:30 Berlin time

Questions?
There must be some...

Questions?
There must be some...

