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Replicating this presentation
Use the pacman package to install and load packages:

if (!require("pacman"))
  install.packages("pacman")

pacman::p_load(
  tidyverse,   # for data wrangling and visualization
  tidymodels,  # for modeling
  haven,       # for reading dta files
  here,        # for referencing folders
  dagitty,     # for generating DAGs
  ggdag,       # for drawing DAGs
  knitr        # for printing html tables
)

https://cran.r-project.org/web/packages/pacman/vignettes/Introduction_to_pacman.html
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Causal Inference



Predicting vs. explaining

Source: XKCD

https://xkcd.com/552/


Looking forward
Until now, our focus was on prediction.

However, what we economists mostly care about is causal inference:

What is the effect of class size on student performance?
What is the effect of education on earnings?
What is the effect of government spending on GDP?
etc.

Before we learn how to adjust and apply ML method to causal inference problems, we need
to be explicit about what causal inference is.

This lecture will review two dominant approaches to causal inference, the
statistical/econometric approach and the computer science approach.



Pearl and Rubin

Source: The Book of Why (Pearl and Mackenzie)



A note on identi�cation
The primary focus of this lecture is on identi�cation, as opposed to prediction, estimation
and inference.

In short, identi�cation is de�ned as

"model parameters or features being uniquely determined from the observable population that
generates the data." - (Lewbel, 2019)

More speci�cally, think about identifying the parameter of interest when you have
unlimited data (the entire population).



Potential Outcomes



The road not taken

Source: https://mru.org/courses/mastering-econometrics/ceteris-paribus

https://mru.org/courses/mastering-econometrics/ceteris-paribus


Notation
 is a random variable

 is a vector of attributes

 is a design matrix

Y

X

X



Treatment and potential outcomes (Rubin, 1974, 1977)
Treatment

Treatment and potential outcomes

Observed outcome: Under the Stable Unit Treatment Value Assumption (SUTVA), The
realization of unit 's outcome is

Fundamental problem of causal inference (Holland, 1986): We cannot observe both  and .

Di = { 1, if unit i received the treatment
0, otherwise.

Yi0 is the potential outcome for unit i with Di = 0

Yi1 is the potential outcome for unit i with Di = 1

i

Yi = Y1iDi + Y0i(1 − Di)

Y1i Y0i



Treatment e�ect and observed outcomes
Individual treatment effect: The difference between unit 's potential outcomes:

Average treatment effect (ATE)

Average treatment effect for the treatment group (ATT)

NOTE: The complement of the treatment group is the control group.

i

τi = Y1i − Y0i

E[τi] = E[Y1i − Y0i] = E[Y1i] − E[Y0i]

E[τi|Di = 1] = E[Y1i − Y0i|Di = 1] = E[Y1i|Di = 1] − E[Y0i|Di = 1]



Selection bias
A naive estimand for ATE is the difference between average outcomes based on treatment
status

However, this might be misleading:

Causal inference is mostly about eliminating selection-bias

EXAMPLE: Individuals who go to private universities probably have different characteristics
than those who go to public universities.

E [Yi|Di = 1] − E [Yi|Di = 0] = E [Y1i|Di = 1] − E [Y0i|Di = 1]


ATT

+ E [Y0i|Di = 1] − E [Y0i|Di = 0]


selection bias



Randomized control trial (RCT) solves selection bias
In an RCT, the treatments are randomly assigned. This means that  is independent of
potential outcomes, namely

RCTs enables us to estimate ATE using the average difference in outcomes by treatment status:

EXAMPLE: In theory, randomly assigning students to private and public universities would
allow us to estimate the ATE going to private school have on future earnings. Clearly, RCT in
this case is infeasible.

Di

{Y1i,Y0i} ⊥ Di

E [Yi|Di = 1] − E [Yi|Di = 0] = E [Y1i|Di = 1] − E [Y0i|Di = 0]

= E [Y1i|Di = 1] − E [Y0i|Di = 1]

= E [Y1i − Y0i|Di = 1]

= E [Y1i − Y0i]

= ATE



Estimands and regression
Assume for now that the treatment effect is constant across all individuals, i.e.,

Accordingly, we can express  as

Or more conveniently

where  and  is the random component of .

τ = Y1i − Y0i, ∀i.

Yi

Yi = Y1iDi + Y0i(1 − Di)

= Y0i + Di(Y1i − Y0i),

= Y0i + τDi, since τ = Y1i − Y0i

= E[Y0i] + τDi + Y0i − E[Y0i], add and subtract E[Y0i]

Yi = α + τDi + ui,

α = E[Y0i] ui = Y0i − E[Y0i] Y0i



Unconfoundedness
Typically, in observational studies, treatments are not randomly assigned. (Think of 

.)

In this case, identifying causal effects depended on the Unconfoundedness assumption (also
known as "selection-on-observable"), which is de�ned as

In words: treatment assignment is independent of potential outcomes conditional on
observable , i.e., selection bias disappears when we control for .

Di = {private, public}

{Y1i,Y0i} ⊥ Di|Xi

Xi Xi



Adjusting for confounding factors
The most common approach for controlling for  is by adding it to the regression:

COMMENTS:

�. Strictly speaking, the above regression model is valid if we actually believe that the "true"
model is 

�. If  is randomly assigned, adding  to the regression might increases the accuracy of
ATE.

�. If  is assigned conditional on  (e.g., in observational settings), adding  to the
regression eliminates selection bias.

Xi

Yi = α + τDi + X ′
iβ + ui,

Yi = α + τDi + X ′
iβ + ui.

Di Xi

Di Xi Xi



Illustration: the OHIE data
The Oregon Health Insurance Experiment (OHIE), is a randomized controlled trial for
measuring the treatment effect of Medicaid eligibility.

Treatment group: Those selected in the Medicaid lottery.

The outcome, doc_any_12m, equals to 1 for patients who saw a primary care physician, and
zero otherwise.



Load the OHIE data
In this illustration we will join 3 separate (stata) �les and load them to R using the {haven}
package:

descr <- 
  here("08-causal-inference/data",
       "oregonhie_descriptive_vars.dta") %>% 
  read_dta()

prgm <- 
  here("08-causal-inference/data",
       "oregonhie_stateprograms_vars.dta") %>% 
  read_dta()

s12 <- 
  here("08-causal-inference/data",
       "oregonhie_survey12m_vars.dta") %>% 
  read_dta()

The entire OHIE data can be found here.

https://haven.tidyverse.org/
http://nber.org/oregon/4.data.html


Preprocessing: Joining datasets
Join 3 data frames and remove empty responses:

ohie_raw <- 
  descr %>% 
  left_join(prgm) %>% 
  left_join(s12) %>% 
  filter(sample_12m_resp == 1) %>% 
  drop_na(doc_any_12m)



Preprocessing: Re�nement
Select the relevant variables and re-level numhh_list (household size)

ohie <- 
  ohie_raw %>% 
  dplyr::select(numhh_list, treatment, doc_any_12m) %>% 
  mutate(
    numhh_list = factor(numhh_list, levels = c("1", "2", "3"))
  )



The �nal dataset
ohie

## # A tibble: 23,492 x 3
##    numhh_list        treatment doc_any_12m
##    <fct>             <dbl+lbl>   <dbl+lbl>
##  1 1          1 [Selected]         0 [No] 
##  2 1          1 [Selected]         0 [No] 
##  3 1          1 [Selected]         0 [No] 
##  4 1          1 [Selected]         1 [Yes]
##  5 2          0 [Not selected]     0 [No] 
##  6 1          0 [Not selected]     1 [Yes]
##  7 2          0 [Not selected]     1 [Yes]
##  8 1          1 [Selected]         1 [Yes]
##  9 1          1 [Selected]         0 [No] 
## 10 2          1 [Selected]         1 [Yes]
## # ... with 23,482 more rows



Distribution of treated-control
ohie %>% 
  count(treatment) %>%
  kable(format = "html")

treatment n
0 11811
1 11681



Estimating ATE
The estimated model

In R:

fit <- lm(doc_any_12m ~ treatment, data = ohie)

doc_any_12mi = α + τ × selectedi + εi



Results
fit %>% 
  tidy(conf.int = TRUE) %>% 
  filter(term != "(Intercept)") %>% 
  dplyr::select(term, estimate, starts_with("conf.")) %>% 
  kable(digits = 4, format = "html")

term estimate conf.low conf.high
treatment 0.0572 0.0447 0.0697

Interpretation: being selected in the lottery increases the probability that you visit primary
care physician in the following year by 5.72 [4.47, 7.97] percentage points.



Adjustments
One issue with OHIE is that people are able to apply for Medicaid for their entire household.

This fact undermines the critical random assignment assumption since belonging to larger
households increases the chances of being selected to Medicade.

ohie %>% 
  count(treatment, numhh_list) %>% 
  kable(format = "html")

treatment numhh_list n
0 1 8824
0 2 2981
0 3 6
1 1 7679
1 2 3950
1 3 52



ATE under adjustment for numhh
The model with adjustment:

Estimation:

fit_adj <- lm(doc_any_12m ~ treatment + numhh_list, data = ohie)

doc_any_12mi = α + τ × selectedi + β × numhhi + εi



Results
fit_adj %>% 
  tidy(conf.int = TRUE) %>% 
  dplyr::select(term, estimate, starts_with("conf.")) %>% 
  kable(digits = 4, format = "html")

term estimate conf.low conf.high
(Intercept) 0.5925 0.5831 0.6020
treatment 0.0635 0.0510 0.0760
numhh_list2 -0.0654 -0.0792 -0.0517
numhh_list3 -0.1839 -0.3097 -0.0582

After adjusting for numhh, ATE has increased from 5.72 to 6.35 percentage points. (Can you guess
why?)



Directed Acyclic Graphs



DAGs



A DAG (directed acyclic graph) is a way to
model a system of causal interactions
using graphs.

Nodes represents random variables,
e.g., , , etc.
Arrows (or directed edges) represent
"from  to" causal effects. For
example,  reads "  causes ".
A path is a sequence of edges
connecting two nodes. For example, 

 describes a path
from  to .
In a direct path arrows point to the
same direction: 

What are DAGs?

X Y

→
Z → X Z X

Z → X → M ← Y

Z Y

Z → X → M



 is a common cause of  and .

conditioning on  removes
dependency between  and  through

.

In DAG terms, controlling for X "closes
the backdoor path" between  and ,
and leaves open the direct path.

The notion of closing the backdoor
path is related to the notion of
omitted variable bias.

Confounder DAG

X D Y

X

D Y

X

D Y



DAGs and SEM
Another way to think about DAGs is as non-parametric structural equation models (SEM)

For example, the single-confounder DAG we've just seen can be represented by a set of
three equations:

where

The 's denote the causal mechanisms in the model. Are not restricted to be linear.
,and  denote independent background factors that the we chooses not to include

in the analysis.
Assignment operator  captures asymmetry of causal relationships.

X ← fX (uX)

D ← fD (X,uD)

Y ← fY (D,X,uY )

fi
uX,uD uY

(←)



Unconfoundedness in DAGs

Source: Imbens (2019).



Example: Identifying the Returns to Education

Source: Imbens (2019).



Source: Imbens (2019).

Instrumental variables in DAGs



 causes  causes .

 mediates the causal effect of  on 

conditioning on  removes
dependency between  and 

We've essentially closed a direct path
(the only direct path between  and 
.

A mediator

D M Y

M D

Y

M

D Y

D Y



 are  are independent.

 and  jointly cause .

conditioning on  creates dependency
between  and 

A Collider

D Y

D Y C

C

D Y



"Bad controls" are variables that are
themselves outcome variables.

This distinction becomes important
when dealing with high-dimensional
data

EXAMPLE: Occupation as control in a
return to years of schooling regression.

Discovering that a person works as a
developer in a high-tech �rm changes
things; knowing that the person does not
have a college degree tells us immediately
that he is likely to be very talented.

Example: "Bad controls"



Collider: M-bias



Simulations



Simulate the DGP:

n <- 1000
p <- 3

u <- matrix(rnorm(n * p), n, p)

x <- u[,2]
d <- 0.8 * x + 0.6 * u[,1]
y <- 0 * d + 0.2 * x + u[,3]

Note that the "true" effect  is zero
(i.e., ).

Simulation I: De-counfounding

D → Y

ATE = 0



Raw correlation matrix:

y x d
y 1.0 0.1 0.1
x 0.1 1.0 0.8
d 0.1 0.8 1.0

Note:  and  are correlated even though
there is no direct arrow between them.
This is due to the confounder  which
opens a backdoor path between  and .

Simulation I: De-counfounding (cont.)

Y D

X

Y D



Let's estimate the model with  on the
right hand side:

term estimate p.value
d 0.01 0.81
x 0.15 0.01

and without 

term estimate p.value
d 0.12 0

BOTTOM LINE: Controlling for  provides
the correct answer.

Simulation I: De-counfounding (cont.)

X

X

X



The DGP:

n <- 1000
p <- 3

u <- matrix(rnorm(n * p), n, p)

d <- u[,1]
m <- 1.3 * d + u[,2]
y <- 0.1 * m + u[,3]

True effect of  is .

Simulation II: Mediator

D → Y 1.3 × 0.1 = 0.13



Raw correlation matrix:

y m d
y 1.0 0.1 0.1
m 0.1 1.0 0.8
d 0.1 0.8 1.0

In this case, both the mediator  and the
treatment  are correlated with the
outcome .

Simulation II: Mediator (cont.)

M

D

Y



Estimate the model with :

term estimate p.value
d -0.03 0.59
m 0.11 0.00

and without :

term estimate p.value
d 0.12 0

BOTTOM LINE: Controlling for  in this
case biases the total effect of  on 
downward since it blocks the path from 
to .

Simulation II: Mediator (cont.)

M

M

M

D Y

D

Y



Generate the data:

Note that  is a collider, and that the
"true" effect  is zero (i.e., ).

Simulation III: M-bias

n <- 1000
p <- 3

u <- matrix(rnorm(n * p), n, p)

d <- u[,1]
x <- 0.8 * u[,1] + 0.2 * u[,2] + 0.6 * u
y <- 0 * d + u[,2]

X

D → Y ATE = 0



Raw correlation matrix:

y x d
y 1.0 0.2 0.0
x 0.2 1.0 0.8
d 0.0 0.8 1.0

Notice how  is uncorrelated with  and 
 is correlated with both  and .

Simulation III: M-bias (cont.)

Y D

X D Y



Estimate the model with 

term estimate p.value
d -0.37 0
x 0.49 0

and without 

term estimate p.value
d 0.01 0.69

BOTTOM LINE: Controlling for  in this
case results in �nding a spurious effect of 

 on  since it opens a backdoor path
between  to .

Simulation III: M-bias

X

X

X

D Y

D Y



Limitations of DAGs
Hard to write down a DAG for complicated (econometric) structural models.

Need to specify the entire DGP (is it REALY a limitation?)

Simultaneity: "In fact it is not immediately obvious to me how one would capture supply
and demand models in a DAG" (Imbens, forthcoming)



Recommended introductory level resources on DAGs
The Book of Why by Pearl and Mackenzie.

Causal Inference in Machine Learning and Al by Paul Hünermund.

Causal Inference: The Mixtape (pp. 67-80) by Scott Cunningham.

Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for
Empirical Practice in Economics by Guido W. Imbens

A Crash Course in Good and Bad Controls by Cinelli, Forney, and Pearl, J. (2020).

http://bayes.cs.ucla.edu/WHY/
https://www.dropbox.com/s/ps4a0iwc0q51q9z/Hunermund%20-%20Causal%20Inference%20in%20ML%20and%20AI.pdf
https://www.scunning.com/mixtape.html
https://www.aeaweb.org/articles?id=10.1257/jel.20191597&&from=f
https://ftp.cs.ucla.edu/pub/stat_ser/r493.pdf


Next time: Causal inference in high-dimensional setting
Consider again the standard "treatment effect regression":

Our object of interest is , the estimated average treatment effect (ATE).

In high-dimensional settings .

Yi = α + τDi


low dimensional

+
k

∑
j=1

βjXij


high dimensional

+ εi, for i = 1, … ,n

τ̂

k ≫ n



slides %>% end()slides %>% end()
 Source code Source code

https://github.com/ml4econ/lecture-notes-2021/tree/master/08-causal-inference
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