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Packages and setup
Use the {pacman} package that automatically loads and installs packages if necessary:

if (!require("pacman")) install.packages("pacman")

pacman::p_load(
  tidyverse,   # for data wrangling and visualization
  broom,       # for tidy model output
  rpart,       # for estimating CART
  rpart.plot,  # for plotting rpart objects
  ranger,      # for estimating random forests
  vip,         # for variable importance plots
  knitr,       # for displaying nice tables
  here         # for referencing folders and files
)

# remotes::install_github("grantmcdermott/parttree")
library(parttree)

Set a theme for ggplot (Relevant only for the presentation), and set a seed for replication

theme_set(theme_grey(20))
set.seed(1203)

https://cran.r-project.org/web/packages/pacman/vignettes/Introduction_to_pacman.html
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Types of desicion tree applications
Decision trees can be applied to both regression and classi�cation tasks.

We �rst consider regression problems using the Boston dataset, and then move on to
classi�cation using the Titanic dataset.



Strati�cation



Boston housing (again)
Load the data

boston <- 
  here("04-ml-workflow/data","BostonHousing.csv") %>% 
  read_csv()

## Parsed with column specification:
## cols(
##   crim = col_double(),
##   zn = col_double(),
##   indus = col_double(),
##   chas = col_double(),
##   nox = col_double(),
##   rm = col_double(),
##   age = col_double(),
##   dis = col_double(),
##   rad = col_double(),
##   tax = col_double(),
##   ptratio = col_double(),
##   b = col_double(),
##   lstat = col_double(),
##   medv = col_double()
## )



boston %>% 
  ggplot(aes(lstat, medv)) +
  geom_point()
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Recall the nonlinear association between lstat and medv



Let  denote an arbitrary two-way "split"
dummy variable such that:

On the left, the blue step-function is the
�tted value from running

Note that the prediction is given by the
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Two-way split of lstat

Di

Di = { 1  if lstati > 15

0  otherwise ,

medvi = β0 + β1Di + εi

medvi



Now, let's try a three-way split:

Again, the prediction is given by the
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Three-way split

boston %>% 
  ggplot(aes(lstat, medv)) + 
  geom_point() +
  geom_smooth(
    method = lm,
    se = FALSE,
    formula = y ~ (x>25) + (x<=25 & x>=15) + (x<15) 
  )

D1i = { 1  if lstati > 25

0  otherwise,
D1i = { 1  if lstati < 5

0  otherwise ,

medvi



You get the point

The more splits we have, the better the
�t. (What about prediction?)
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Four-way split

boston %>% 
  ggplot(aes(lstat, medv)) + 
  geom_point() +
  geom_smooth(
    method = lm,
    se = FALSE,
    formula = y ~ (x>25) + (x<=25 & x>=15) + (x<15 & 
  )



Issues
In general using splits involve three main issues:

�. Where to split?
�. How many splits?
�. How to predict within each node?

The answers to the these questions are related to the decision trees framework.



Regression Trees



Classi�cation and regression trees (CART)
Basic idea (Breiman et al., 1984):

�. Split the features space  - into  distinct and non-overlapping regions
(rectangles), .

�. For every observation that falls into the region  we make the same prediction
(regression or classi�cation). For example, for a continuous ,

where  is a test observation that belongs to region .
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How to split?
Going over every possible partitions of the feature space is infeasible. (Why?)

Instead, the CART algorithm follows a greedy approach.

Starting with all of the data, consider a splitting variable  and split point , and de�ne the
pair of half-planes

�nd the predictor  and split  that partitions the data into two regions  and 
 such that the overall sums of squares error are minimized:

where  and  are the averages of the training set outcomes within each group.

j s

R1(j, s) = {x|xj ≤ s} , R2(j, s) = {x|xj > s}

j∗ s∗ R1(j∗, s∗)
R2(j∗, s∗)

RSS = ∑
i∈R1(j∗,s∗)

(yi − ȳ1)2 + ∑
i∈R2(j∗,s∗)

(yi − ȳ2)2

ȳ1 ȳ2



The CART Algorithm
For each node, beginning with the root containing the full sample:

�. Determine the single  minimizing split for this node.

�. Split this parent node into the left and right node.

�. Apply steps 1 and 2 to each child node.

�. Continue until you reach a leaf node of some prespeci�ed minimum size (e.g., stop splitting
when there are fewer than, say, 10 observations in each leaf).

RSS



Source: ESL, pp. 308.

Top right: partition of a 2-D feature
space by CART.

Top left: general partition that cannot
be obtained from CART.

Bottom left: the tree corresponding to
the partition in the top right.

Bottom right: prediction surface.

Feature space partitioning

http://127.0.0.1:5350/07-trees-forests.html


How large should we grow the tree?
Large tree - over�t. Small tree - high variance.

The tree's level of expressiveness is captured by its size (the number of terminal nodes).

Common practice: Build a large tree and prune the tree backwards using cost-complexity
pruning.



Cost-complexity pruning
The cost complexity criterion associated with a tree  is given by

where

 is the sum of squared error for tree .
 is the number of terminal nodes in tree .

 is the complexity parameter.

Hence, for CART, the penalty is a function of the number of terminal nodes.

NOTE:  and  are analogous to  and  in the lasso.

T

RSScp(T ) = RSS(T ) + cp|T |

RSS T

|T | T

cp

cp |T | λ ∥β∥1



The complexity parameter is unit free and ranges from 0 to 1:

When , we have a fully saturated tree.

When , there are no splits, i.e, we predict the unconditional mean.

cp

cp = 0

cp = 1



The R implementation of the CART
algorithm is called {rpart}. Estimating a
tree is straightforward using the rpart()
function:

tree_fit <- rpart(
  medv ~ lstat,
  data = boston,
  control = rpart.control(cp = 1)
)

Recall that setting  enforces no
splits.

Plotting a tree is done using the
{rpart.plot} package

rpart.plot(tree_fit, cex = 2)
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tree_fit <- rpart(
  medv ~ lstat,
  data = boston,
  control = rpart.control(cp = 0, minsplit = 80)
)
rpart.plot(tree_fit, cex = 1)

Setting  results in a saturated tree.

Note we've set the minimum split criterion
to  just to avoid clutter (too many splits)
in the �gure on the right.
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Tuning 
Breiman et al. (1984) suggest using a cross-validation approach to �nd the optimal* :

For any value of the  there is a unique, subtree  that minimizes cost complexity 
.

To �nd the best subtree, we evaluate the data across a sequence of  values. This process
generates a (�nite) sequence of subtrees which contains .

Estimation of  is achieved by cross-validation: we choose the value  that minimizes the
cross-validated . Our �nal tree is 

cp

cp

cp Tcp
RSScp(T )

cp

Tcp

cp ĉp

RSS Tĉp

[*] Breiman et al. (1984) also propose using the 1se heuristic, i.e., �nd the smallest tree that is
within one standard error of the tree with smallest absolute error.



The plotcp() function from the {rpart}
package gives a visual representation of
the cross-validation results in an rpart
object:

tree_fit <- rpart(
  medv ~ lstat,
  data = boston
)
plotcp(tree_fit)
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We now proceed to pruning the tree using
the prune() function (also from {rpart}),
where we set cp = 0.029:

tree_prune <- prune(tree_fit, cp = 0.029)

And now we can plot the pruned tree:

rpart.plot(tree_prune, cex = 2)
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How would you partition the data?

boston %>% 
  ggplot(aes(lstat, rm, color = medv)) +
  scale_color_viridis_c() +
  geom_point(size = 2, alpha = 0.8)
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tree_fit <- rpart(
  medv ~ lstat + rm,
  data = boston,
  control = rpart.control(cp = 0.15),
  method = "anova"
)
rpart.plot(tree_fit, cex = 2)

For now, we will ignore the cp = 0.15
argument.
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Variable importance
Once a tree has been estimated, it is common practice to assess the relative importance of
the features to the prediction.

A popular measure of variable (feature) importance is the total amount that the  is
decreased due to splits over a given variable (Breiman et al., 1984.)

Variables that appear higher or multiple times are more important than variable that
appear lower in the tree or less frequently.

RSS



We now �t a tree with the entire set of
features in the Boston dataset:

tree_all_vars <- rpart(medv ~ ., data = boston)

We can easily show variable importance
for the �tted tree with the help of the
{vip} package:

vip(tree_all_vars)

rm (the number of rooms) is clearly the
most important feature in predicting medv.
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Boston variable importance

https://cran.r-project.org/web/packages/vip/index.html


Classi�cation Trees



Adjustment to classi�cation tasks: Splits
Instead of , splits are typically based on the Gini index (a.k.a node purity), de�ned by

a measure of total variance across the total classes (this is rpart's default.)

An alternative to the Gini index is cross-entropy, given by

RSS

G =
K

∑
k=1

p̂mk (1 − p̂mk) ,

D = −
K

∑
k=1

p̂mk log p̂mk



Adjustment to classi�cation: Prediction
Instead of predicting based on the average  in region , prediction is based on a
majority rule: each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs.

y Rm



Adjustment to classi�cation: Variable importance
Variable importance is determined based on the amount that the Gini index/cross-entropy
is decreased by splits over a given variable.



"The RMS Titanic was a British passenger
liner that sank in the North Atlantic Ocean
in the early morning hours of 15 April 1912,
after it collided with an iceberg during its
maiden voyage from Southampton to New
York City. There were an estimated 2,224
passengers and crew aboard the ship, and
more than 1,500 died, making it one of the
deadliest commercial peacetime maritime
disasters in modern history."

— Wikipedia

Classi�cation trees example: The Titanic

https://en.wikipedia.org/wiki/RMS_Titanic


Load the data
We'll replicate the results in Varian (2014) "Big data: New tricks for econometrics":

titanic_raw <- 
  here("07-trees-forests/data", "titanic_varian.csv") %>% 
  read_csv()

titanic_raw %>% glimpse()

## Rows: 1,309
## Columns: 14
## $ pclass    <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
## $ survived  <dbl> 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1~
## $ name      <chr> "Allen, Miss. Elisabeth Walton", "Allison, Master. Hudson Trevor~
## $ sex       <chr> "female", "male", "female", "male", "female", "male", "female", ~
## $ age       <dbl> 29.00, 0.92, 2.00, 30.00, 25.00, 48.00, 63.00, 39.00, 53.00, 71.~
## $ sibsp     <dbl> 0, 1, 1, 1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1~
## $ parch     <dbl> 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1~
## $ ticket    <chr> "24160", "113781", "113781", "113781", "113781", "19952", "13502~
## $ fare      <dbl> 211.3375, 151.5500, 151.5500, 151.5500, 151.5500, 26.5500, 77.95~
## $ cabin     <chr> "B5", "C22 C26", "C22 C26", "C22 C26", "C22 C26", "E12", "D7", "~
## $ embarked  <chr> "S", "S", "S", "S", "S", "S", "S", "S", "S", "C", "C", "C", "C",~
## $ boat      <chr> "2", "11", NA, NA, NA, "3", "10", NA, "D", NA, NA, "4", "9", "6"~
## $ body      <dbl> NA, NA, NA, 135, NA, NA, NA, NA, NA, 22, 124, NA, NA, NA, NA, NA~
## $ home.dest <chr> "St Louis, MO", "Montreal, PQ / Chesterville, ON", "Montreal, PQ~



Data details
In this lecture, we will focus on a single outcome and two features:

Variable Role De�nition Values
survived Outcome Survival 0 = No, 1 = Yes
age Feature Age in years
pclass Feature Ticket class 1 = 1st, 2 = 2nd, 3 = 3rd

Our goal: Predict which passengers survived based on their age and status.



Preprocessing
For what will follow, it would be useful to remove NAs and de�ne survived as a factor:

titanic <-titanic_raw %>% 
  select(survived, age, pclass) %>% 
  drop_na() %>% 
  mutate(
    survived = as_factor(survived),
  ) 

titanic

## # A tibble: 1,046 x 3
##    survived   age pclass
##    <fct>    <dbl>  <dbl>
##  1 1        29         1
##  2 1         0.92      1
##  3 0         2         1
##  4 0        30         1
##  5 0        25         1
##  6 1        48         1
##  7 1        63         1
##  8 0        39         1
##  9 1        53         1
## 10 0        71         1
## # ... with 1,036 more rows



How would you stratify the data?

titanic %>% 
  ggplot(aes(pclass, age, color = survived)) +
  geom_jitter(alpha = 0.5, size = 2)
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Fit the tree

rpart_model <- rpart(
  survived ~ pclass + age,
  data = titanic,
  method = "class"
)

Prune

rpart_prune <- prune(rpart_model, cp = .038)

Plot

rpart.plot(rpart_prune, type=0, extra=1, cex = 2)
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Estimate , prune, and plot the tree



This is how the tree partitions the data

where I've used the geom_parttree()
function from the {parttree} package (in
development.)
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titanic %>% 
  ggplot(aes(pclass, age, color = survived)) +
  geom_jitter(alpha = 0.8, size = 2) +
  geom_parttree(data = rpart_prune, aes(fill=survive
  theme_minimal()

https://github.com/grantmcdermott/parttree


Recall: trees stratify the features space
Let's generate partition dummies that correspond to our tree's partitioning:

titanic_lm <- 
  titanic %>% 
  mutate(
    survived = as.numeric(survived) - 1,
    class_3 = if_else(pclass == 3, 1, 0),
    class_1_or_2_age_below_16 = if_else(pclass %in% c(1,2) & age < 16, 1, 0),
    class_1_age_above_16 = if_else(pclass == 1 & age >=16, 1, 0),
    class_2_age_above_16 = if_else(pclass == 2 & age >=16, 1, 0),
  ) %>% 
  select(survived, starts_with("class_"))

titanic_lm %>% glimpse()

## Rows: 1,046
## Columns: 5
## $ survived                  <dbl> 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, ~
## $ class_3                   <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ class_1_or_2_age_below_16 <dbl> 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
## $ class_1_age_above_16      <dbl> 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
## $ class_2_age_above_16      <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~



Now, we can estimate a linear model
using our set of partition dummies and
compare the results to our tree.

lm(survived ~ . -1, data = titanic_lm) %>%
  tidy() %>% 
  select(term, estimate, std.error)

## # A tibble: 4 x 3
##   term                      estimate std.error
##   <chr>                        <dbl>     <dbl>
## 1 class_3                      0.261    0.0204
## 2 class_1_or_2_age_below_16    0.944    0.0762
## 3 class_1_age_above_16         0.630    0.0275
## 4 class_2_age_above_16         0.378    0.0299
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Random Forests



Trees: pros and cons
Pros:

Intuitive (more than regression?)

Interpretable

Nonparametric (no bookkeeping)

Cons:

Over�t

Poor predictive performance (typically)



Random forests: Basic Idea
Breiman (2001): Instead of using a single tree, average the predictions of several trees,
�tted to bootstrapped training samples + use a subset of the feature space for each split.

Intuition: Reduce variance (over�t) by averaging multiple noisy and weakly-correlated
predictions.



The random forests algorithm
Suppose  is the number of bootstrapped samples, i.e., the number of trees in the forest
(typically thousands.)

For  :

�. Sample with-replacement  observations from the data.

�. Grow a tree , where for each split, draw a subset of  features (a common choice is 
, where  is the dimension of .)

�. Use typical tree model stopping criteria to determine when a tree is complete (but do not
prune.)

B

b = 1 …B

n

Tb− m

m ≈ √p p x



Making predictions
Regression forests:

For each observation, predict based on the average of  predictions, i.e.,

where  is the prediction based on sample .

Classi�cation forests:

For each test observation, record the class predicted by each of the  trees, and take a
majority vote.

B

f̂ RF(x) =
B

∑
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f̂
∗b
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Out-of-bag error estimation
Because pf bootstrap, on average, each bagged tree makes use of around two-thirds of the
observations.

Thus, we can use the remaining on-third observations as "out-of-bag" (OOB) validation set.

This will yield, on average,  predictions for the  observation that belong to the OOB set.B ith



Fitting forests using ranger
Fitting forests in R is easy with the {ranger} package, which uses the same syntax as {rpart}.

rf_fit <- ranger(
  formula = medv ~ .,
  data = boston,
  mtry = 3,
  num.trees = 1000,
  importance = "impurity"  
)

where

num.trees is the argument for , the number of trees.
mtry is the argument for , the number of features drawn before each split.

Note that the importance argument will be latter used to construct variable importance
measures.

B

m

https://cran.r-project.org/web/packages/ranger/ranger.pdf


The output of the model
rf_fit

## Ranger result
## 
## Call:
##  ranger(formula = medv ~ ., data = boston, mtry = 3, num.trees = 1000,      importance = "impurity") 
## 
## Type:                             Regression 
## Number of trees:                  1000 
## Sample size:                      506 
## Number of independent variables:  13 
## Mtry:                             3 
## Target node size:                 5 
## Variable importance mode:         impurity 
## Splitrule:                        variance 
## OOB prediction error (MSE):       10.3489 
## R squared (OOB):                  0.8776533



The idea is the same as in trees, only now
we average the effect of a variable over
the  trees.

rf_fit %>% 
  vip()

According to our forest, both lstat and rm
outperform the other features.
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Other Ensemble Methods



Bagging and Boosting
Bagging (Bootstrap Aggregating): same as random forest, only . Inferior to random
forests since trees are correlated.

Boosting: This is an example of a slow learner where each tree is grown using information
from previously grown trees. (can be estimated using the {gbm} package.)

Note: Boosting algorithms in general are very popular and are on the high-end of predictive
performance.

m = p

https://cran.r-project.org/web/packages/gbm/index.html


slides::end()slides::end()
 Source code Source code

https://github.com/ml4econ/lecture-notes-2021/tree/master/07-trees-forests
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