
06 - Classi�cation
ml4econ, HUJI 2021
Itamar Caspi
April 18, 2021 (updated: 2021-04-18)

Packages and setup
Use the {pacman} package that automatically loads and installs packages if necessary:

if (!require("pacman")) install.packages("pacman")

pacman::p_load(
 tidyverse, # for data wrangling and visualization
 tidymodels, # for modeling
 knitr, # for displaying nice tables
 here, # for referencing folders and files
 glmnet, # for estimating lasso and ridge
 ggmosaic # for tidy mosaic plots
)

Set a theme for ggplot (Relevant only for the presentation)

theme_set(theme_grey(20))

And set a seed for replication

set.seed(1203)

https://cran.r-project.org/web/packages/pacman/vignettes/Introduction_to_pacman.html

Outline
Binary Classi�cation Problems

The Confusion Matrix

The Logistic Regression Model

Sensitivity Speci�city Trade-off

Multiclass classi�cation

Binary Classi�cation Problems

Bill Gates on Testing for COVID-19

"Basically, there are two critical cases: anyone who is symptomatic, and anyone
who has been in contact with someone who tested positive. Ideally both groups
would be sent a test they can do at home without going into a medical center.
Tests would still be available in medical centers, but the simplest is to have the
majority done at home. To make this work, a government would have to have a
website that you go to and enter your circumstances, including your symptoms.
You would get a priority ranking, and all of the test providers would be required
to make sure they are providing quick results to the highest priority levels.
Depending on how accurately symptoms predict infections, how many people test
positive, and how many contacts a person typically has, you can �gure out how
much capacity is needed to handle these critical cases. For now, most countries
will use all of their testing capacity for these cases." - Bill Gates.

Source: "The �rst modern pandemic by Bill Gates"

https://www.gatesnotes.com/Health/Pandemic-Innovation?WT.mc_id=20200423060000_Pandemic-Innovation_MED-media_&WT.tsrc=MEDmedia

Binary classi�cation
Let denote the outcome of a COVID-19 test, where

where the values 1 and 0 are chosen for simplicity.1

Two types of questions we might ask:

�. What is the probability of being positive?
�. Can we classify an individual as positive/negative?

yi

yi = { 1 if positive,

0 if negative,

[*] It is common to �nd a notation for binary outcomes in the ML literature.{1, −1}

Israeli COVID-19 tests data
The The Isreali Ministry of Health provides information on more than 100,000 COVID-19 test
results. Our aim here is to predict which person will be classi�ed as "positive", i.e. infected by
the virus, based on his symptoms and characteristics.

Outcome variable: corona_result

Features:

Symptoms
cough
fever
sore_throat
shortness_of_breath
head_ache

Characteristics
age_60_and_above
gender

https://data.gov.il/dataset/covid-19/resource/d337959a-020a-4ed3-84f7-fca182292308

Read and examine the data
covid_raw <- here("06-classification/data","covid_proc.csv") %>%
 read_csv()

covid_raw %>% glimpse()

Rows: 107,542
Columns: 8
$ cough <dbl> 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, ...
$ fever <dbl> 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, ...
$ sore_throat <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, ...
$ shortness_of_breath <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, ...
$ head_ache <dbl> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
$ corona_result <chr> "negative", "negative", "negative", "positive", "ne...
$ age_60_and_above <chr> "No", "No", "Yes", "Yes", "Yes", "Yes", "No", "No",...
$ gender <chr> "male", "male", "male", "male", "female", "male", "...

Note that since and , we should not worry much about over�tting.n = 107, 542 p = 7

Preprocessing
We'll now de�ne all variables, outcome and features, as factors:

covid <- covid_raw %>%
 mutate_all(as_factor)

and extract the outcome and features as matrices (for later use with glmnet):

x <- covid %>%
 select(-corona_result) %>%
 model.matrix(~ .-1, data = .)

y <- covid %>% pull(corona_result) %>% as_factor()

Raw detection frequencies
How are test results distributed?

covid %>%
 group_by(corona_result) %>%
 count()

A tibble: 2 x 2
Groups: corona_result [2]
corona_result n
<fct> <int>
1 negative 98586
2 positive 8956

This is an example of class imbalance (the distribution of examples across the known classes
is skewed), which is a typical feature of classi�cation problems.

Measuring classi�cation accuracy
What does MSE mean in the context of classi�cation problems?

In words: In this case, MSE measures the missclassifcation rate, i.e., the ratio between the
number of missclassi�cations and the total number of observations.

Classi�cation accuracy is the total number of correct predictions divided by the total number
of predictions made for a dataset.

Clearly,

Are missclasi�cation/accuracy rates useful? Think imbalanced outcome.

MSE =
n

∑
i=1

(yi − ŷ i)
2 =

n

∑
i=1

1{yi≠ŷ i}
1

n

1

n

accuracy = 1 − missclasification.

A naive classi�er
Our naive "model" says: "classify everyone as being negative"

covid %>%
 mutate(corona_result = as_factor(corona_result)) %>%
 mutate(.fitted_class = factor("negative", levels = c("negative", "positive"))) %>%
 conf_mat(corona_result, .fitted_class)

Truth
Prediction negative positive
negative 98586 8956
positive 0 0

The accuracy of the model is !

Pretty impressive! Or is it?

This naive classi�er lacks the ability to discern one class versus the other, and more
importantly, it fails to identify infected individuals - the thing we really care about!

98, 586/107, 542 = 91.67%

The Confusion Matrix

Beyond accuracy – other measures of performance
The confusion matrix is a table that categorizes predictions according to whether they match
the ground truth.

Truth Truth
Negative Positive

Prediction Negative True negative (TN) False negative (FN)
Prediction Positive False positive (FP) True positive (TP)

Note that , where is the number of observations. Accuracy in this
case is de�ned as .

Note: The confusion matrix can be extended to multiclass outcomes.

TP + TN + FP + TP = N N

(TN + TP)/N

Types of classi�cation errors
False positive rate: The fraction of negative examples that are classi�ed as positive,

 in example.

False negative rate: The fraction of positive examples that are classi�ed as negative,
 in example.

Can we do better?

0/98, 586 = 0%

8, 956/8, 956 = 100%

A perfect classi�er
Here is a simple example. Let’s assume we have a sample of 100 test results, and exactly 20 of
them are labeled "positive". If our classi�er was perfect, the confusion matrix would look like
this:

Truth Truth
Negative Positive

Prediction Negative 80 0
Prediction Positive 0 20

That is, our classi�er has a 100% accuracy rate, zero false positive and zero false negative.

The realistic classi�er
Now, here is a classi�er that makes some errors:

Truth Truth
Negative Positive

Prediction Negative 70 10
Prediction Positive 5 15

In this example, 10 persons with the pathogen were classi�ed as Negative (not infected), and 5
persons without the pathogen were classi�ed as Positive (infected).

Logistic Regession Model

First things �rst: the linear probability model
Consider a dependent variable . Given a vector of features the goal is to predict

.

Let denote the probability of seeing given , i.e.,

The linear probability model speci�es that

However, an OLS regression of on ignores the discreteness of the dependent variable and
does not constrain predicted probabilities to be between zero and one.

yi ∈ {0, 1} xi,
Pr(yi = 1|xi)

pi yi = 1 xi

pi ≡ Pr(yi = 1|xi)

pi = x
′
iβ

yi xi

Logitic regression model
A more appropriate model is the logit model or logistic regression model speci�es as

where is the logistic cdf. As such, the model imposes the restriction that .

p = Λ(x
′β) =

exp(x
′β)

1 + exp(x′β)

Λ(⋅) 0 ≤ pi ≤ 1

Odds-ratio
Note that

Taking logs yields

The above is useful representation of the logistic regression model. The LHS is called the log
odds ratio (or relative risk.)

Hence, we can say that the logistic regression model is linear in log odds-ratio.

= exp(x
′β)

p

1 − p

ln() = x
′β

p

1 − p

The likelihood function
Likelihood refers to the probability of seeing the data given parameters.

taking (natural) logs yields the log likelihood

In estimation, we want to make the above as big as possible (hence, maximum likelihood
estimation, MLE).

Likelihood = ∏
i=1

Pr(yi|xi)

= ∏
i=1

p
yi

i (1 − pi)
1−yi

=
n

∏
i=1

()
yi

()
1−yi

exp(x
′
iβ)

1 + exp(x
′
iβ)

1

1 + exp(x
′
iβ)

log(Likelihood) =
N

∑
i=1

[log(1 + e(β0+x′
i
β))− yi ⋅ (β0 + x′

iβ)]

Deviance
Another usefule conceppt is the deviance, a generalization of the concept of "least squares" to
general linear models (such as logit), and is a measure of the distance between data and �t.

The relationship between deviance and likelihood is given by

The constant wrapps terms that relate to the likelihood of the "perfect" model and we can
mostly ignore it.

Devience = −2 × log(Likelihood) + Constant

Illustration of the Deviance

Source

https://bookdown.org/egarpor/PM-UC3M/glm-deviance.html

Deviance and estimation
In estimation, we want to make deviance as small as possible.

This is the what R's glm function minimizes for logistic regressions.

(NOTE: In linear models, the deviance is porportional to the RSS)

Deviance = −2
N

∑
i=1

[log(1 + e(β0+x′
i
β))− yi ⋅ (β0 + x′

iβ)]+ Constant

∝
N

∑
i=1

[log(1 + e(β0+x′
i
β))− yi ⋅ (β0 + x′

iβ)]

Penalized logistic regression
We can also minimized the deviance subject to a standard lasso type (norm) penalty on :

where again, the penalty is on the sum of the absolute values of (no including the intercept.)

ℓ1 β

min
(β0,β)∈Rp+1

[
N

∑
i=1

log(1 + e(β0+x′
i
β))− yi ⋅ (β0 + x′

iβ)]+ λ∥β∥1
1

N

β

There is some evidence that having fever
is associated with being "positive".

covid %>%
 ggplot() +
 geom_mosaic(
 aes(x = product(corona_result, fever),
 fill = corona_result)
) +
 labs(
 x = "Fever",
 y = "Result",
 fill = ""
)

negative

positive

0 1
Fever

R
es

ul
t

negative
positive

Back to the data: can we do better than being "naive"?

and some evidence for an association
with age (above 60)

negative

positive

No Yes
Above 60 years old

R
es

ul
t

negative
positive

Back to the data: can we do better than being "naive"?

covid %>%
 ggplot() +
 geom_mosaic(
 aes(x = product(corona_result, age_60_and_above)
 fill = corona_result)
) +
 labs(
 x = "Above 60 years old",
 y = "Result",
 fill = ""
)

Estimating the model using R
We will estimate the model using base R's glm (stands for generalized linear model) function:

logit_model <- glm(
 corona_result ~ .,
 data = covid,
 family = "binomial"
)

Alternatively, we can estimate the regularized version of the model using glmnet with family =
"binomial":

logit_model <- cv.glmnet(x, y, family = "binomial")

SPOILER ALERT: cv.glmnet selects all features.

Model output
The tidy() and glance() functions from the {broom} package provides tidy summary of the
output from glm objects:

logit_model %>% tidy()

A tibble: 8 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -3.23 0.0224 -144. 0.
2 cough1 0.656 0.0353 18.6 4.62e- 77
3 fever1 1.92 0.0371 51.8 0.
4 sore_throat1 4.38 0.119 36.7 2.00e-294
5 shortness_of_breath1 4.21 0.138 30.4 1.41e-203
6 head_ache1 5.35 0.139 38.6 0.
7 age_60_and_aboveYes 0.399 0.0343 11.6 2.83e- 31
8 genderfemale -0.308 0.0279 -11.0 2.34e- 28

logit_model %>% glance()

A tibble: 1 x 7
null.deviance df.null logLik AIC BIC deviance df.residual
<dbl> <int> <dbl> <dbl> <dbl> <dbl> <int>
1 61666. 107541 -20726. 41468. 41544. 41452. 107534

Generate predictions
The augment() function (also from {broom}) augments the original dataframe with the �tted
values (and standard errors)

covid_pred <-
 logit_model %>%
 augment(type.predict = "response")

covid_pred

A tibble: 107,542 x 15
corona_result cough fever sore_throat shortness_of_br~ head_ache age_60_and_above
<fct> <fct> <fct> <fct> <fct> <fct> <fct>
1 negative 1 0 0 0 0 No
2 negative 1 1 0 0 0 No
3 negative 0 1 0 0 0 Yes
4 positive 1 1 0 0 0 Yes
5 negative 1 0 0 0 0 Yes
6 positive 1 1 0 0 0 Yes
7 negative 0 0 0 0 0 No
8 negative 1 1 1 0 1 No
9 negative 1 0 1 0 0 No
10 negative 1 1 1 1 0 No
... with 107,532 more rows, and 8 more variables: gender <fct>, .fitted <dbl>,
.se.fit <dbl>, .resid <dbl>, .hat <dbl>, .sigma <dbl>, .cooksd <dbl>,
.std.resid <dbl>

The �gure on the right shows the resulting
in-sample �t. There appears to be little
overlap between probabilities for the true
positives and the true negatives.

covid_pred %>%
 ggplot(aes(x = corona_result,
 y = .fitted,
 fill = corona_result)) +
 geom_boxplot() +
 labs(
 x = "Truth",
 y = "Prediction (y hat)",
 fill = ""
)

0.00

0.25

0.50

0.75

1.00

negative positive
Truth

Pr
ed

ic
tio

n
(y

 h
at

)

negative
positive

Model predictions (in sample)

Sensitivity Speci�sity Trade-o�

Classi�cation rule
To classify individuals as positive/negative we �rst need to set a classi�cation rule (cut-off),
i.e., a probability above which we classify an individual as positive.

For illustration, we'll set :

class_rule <- 0.8

This means that whenever , we would classify individual as positive.

QUESTION: Is this rule overly aggressive or passive?

p∗

p∗ = 0.8

ŷ i > 0.8 i

Classi�cation under the rule
covid_pred <- logit_model %>%
 augment(type.predict = "response") %>%
 mutate(
 .fitted_class = if_else(.fitted < class_rule, "negative", "positive"),
 .fitted_class = as_factor(.fitted_class)
) %>%
 select(corona_result, .fitted, .fitted_class)

covid_pred

A tibble: 107,542 x 3
corona_result .fitted .fitted_class
<fct> <dbl> <fct>
1 negative 0.0709 negative
2 negative 0.342 negative
3 negative 0.287 negative
4 positive 0.437 negative
5 negative 0.0770 negative
6 positive 0.437 negative
7 negative 0.0381 negative
8 negative 1.00 positive
9 negative 0.817 positive
10 negative 1.00 positive
... with 107,532 more rows

Sensitivity speci�city trade-o�
As we've seen, classifying everyone as "negative" , fails to be speci�c, i.e., it fails to
identify any positive results (what we really care about!):

Sensitivity: The fraction of positive examples that are classi�ed as positive ("true positive
rate"), in example.

Speci�city: The fraction of negative examples yhat are classi�ed as negative ("true negative
rate"), in example.

Note that in general,

(p∗ = 1)

98, 586/98, 586 = 100%

0/8, 956 = 0%

false negative rate = 1 − specificity

false positive rate = 1 − sensitivity

The function conf_mat() from the
{yardstick} package provides easy access
to a model's confusion matrix and the
implied performance statistics.

covid_conf_mat <-
 covid_pred %>%
 conf_mat(corona_result, .fitted_class)

covid_conf_mat

Truth
Prediction negative positive
negative 98455 6179
positive 131 2777

A tibble: 3 x 4
.metric .estimator .estimate `1-.estimate`
<chr> <chr> <dbl> <dbl>
1 accuracy binary 0.941 0.0587
2 sens binary 0.999 0.00133
3 spec binary 0.310 0.690

As we can see, for class_rule = 0.8, the
model is highly sensitive but not so
speci�c. Clearly, changing the rule would
change the model's classi�cation
properties.

Our model's confusion matrix

covid_conf_mat%>%
 summary() %>%
 filter(.metric %in% c("accuracy", "sens", "spec"))
 mutate("1-.estimate" = 1 - .estimate)

A receiver operating characteristic (ROC)
curve, plots sensitivity against 1-
speci�city. By doing so, it highlights the
trade-off between false-positive and true-
positive error rates as the classi�er
threshold is varied.

Source: "Machine Learning with R: Expert
techniques for predictive modeling"

Visualizing the sens-spec trade-o� with ROC curves

https://www.amazon.com/Machine-Learning-techniques-predictive-modeling/dp/1784393908

On the left, you can see our model's ROC
curve, plotted using the roc_curve()
function. The red and blue dots
correspond to two cut-offs, 0.8 and 0.2,
respectively.

covid_pred %>%
 roc_curve(corona_result, .fitted) %>%
 autoplot() +
 geom_point(
 aes(x = 0.690, y = 0.999),
 color = "blue"
) + # 0.8 threshold
 geom_point(
 aes(x = 0.436, y = 0.950),
 color = "red"
) # 0.2 threshold

Note that we've used .fitted instead of
.fitted_class.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 - specificity

se
ns

iti
vi

ty

Our model's ROC curve

Ranking of classi�ers can be made
based on the area under the ROC
curve (AUC).
For example, a perfect classi�er has
auc=1 and a classi�er with no
discriminate value has auc=0.5.
Nevertheless, identical auc values can
result from two different ROC curves.
Thus, qualitative examination is
warrant.

covid_pred %>% roc_auc(corona_result, .fitted)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 roc_auc binary 0.827

Source: "Machine Learning with R: Expert
techniques for predictive modeling"

Area under the curve (AUC)

https://www.amazon.com/Machine-Learning-techniques-predictive-modeling/dp/1784393908

AUC and cross-validation
When it comes to classi�cation tasks, it is sometimes more reasonable to tune the penalty
parameter based on classi�cation performance metrics (and not on, say, deviance.)

For example, we can use the cv.glmnet() function while setting the type.measure = "auc" in
order to tune based on auc values

logit_model <- cv.glmnet(
 x, y,
 family = "binomial",
 type.measure = "auc"
)

or set type.measure = "class" to tune based on the misclassi�cation rate.

Multiclass Classi�cation

Multiclass outcomes
Each observation belongs to one of Classes (groups)

Outcome variable

where if the outcome belongs to the class, and zero otherwise.

Conditional probability

In words: the is the probability that belongs to class , given .

j = 1, … , G

y = (y1, … , yG)

yj = 1 jth

pj ≡ Pr(yj = 1|x), for j = 1, … , G

pg y g xi

Multinomial regression model
For each class we model the outcome as

where .

NOTE: There is no explicit base class here since regularized solutions are not equivariant
under base changes, and regularization automatically eliminates the redundancy

pj = , for j = 1, … , G
exp(x

′βj)

∑G

g=1 exp(x′βg)

∑G

j=1 pj = 1

Likelihood and deviance
Given probabilities for , the probability of the observed data is proportional to

where is the total number of observations.

Taking logs and multiplying by -2 yields the multinomial deviance

pij yij = 1

N

∏
i=1

G

∏
j=1

p
yij

ij

N

−2
N

∑
i=1

G

∑
j=1

yij log(pij)

Regularization
Let denote the length of , i.e., the number of features in the model.

The coef�cient matrix, , has elements: coef�cients, one per class, times
the number of features, .

Similar to the binomial case, we can minimized the deviance subject to a standard lasso type (
 norm) penalty on :

where , and the intercepts are unregularized.

K β

B = [β1 ⋯ βG] K × G G

K

ℓ1 β

min
B∈RK×G

{−
N

∑
i=1

G

∑
j=1

yij log pij + λ

K−1

∑
i=1

G

∑
j=1

∣∣βij∣∣}
2

N

pij = Λ(x
′
iβj)

Illustration: Forensic glass data
The forensic glass (fgl) data frame has 214 rows and 10 columns.

The data include for each of 214 shards of glass, measurements on the refractive index (RI)
and 8 measurements of chemical composition by weight of oxide (percentage) for elements Na,
Mg, Al, Si, K, Ca, Ba, and Fe.

The fragments were originally classed into seven types:

WinF: window �oat glass
WinNF: window non-�oat glass
Veh: vehicle window glass
Con: containers
Tabl: tableware
Head: vehicle headlamps

Out objective is to classify new data to one the above six types.

Load and inspect the fgl data
The fgl data comes with the {MASS} library.

fgl_wide <-
 MASS::fgl %>%
 as_tibble()

head(fgl_wide)

A tibble: 6 x 10
RI Na Mg Al Si K Ca Ba Fe type
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct>
1 3.01 13.6 4.49 1.1 71.8 0.06 8.75 0 0 WinF
2 -0.39 13.9 3.6 1.36 72.7 0.48 7.83 0 0 WinF
3 -1.82 13.5 3.55 1.54 73.0 0.39 7.78 0 0 WinF
4 -0.340 13.2 3.69 1.29 72.6 0.570 8.22 0 0 WinF
5 -0.580 13.3 3.62 1.24 73.1 0.55 8.07 0 0 WinF
6 -2.04 12.8 3.61 1.62 73.0 0.64 8.07 0 0.26 WinF

Tidy the data using pivot_longer
The following code chunk transforms the date from wide to long format using the
pivot_longer() function from the {tidyr} package (this will come in handy soon when we
plot the data.):

fgl_long <-
 fgl_wide %>%
 pivot_longer(-type, names_to = "feature", values_to = "value")

fgl_long

A tibble: 1,926 x 3
type feature value
<fct> <chr> <dbl>
1 WinF RI 3.01
2 WinF Na 13.6
3 WinF Mg 4.49
4 WinF Al 1.1
5 WinF Si 71.8
6 WinF K 0.06
7 WinF Ca 8.75
8 WinF Ba 0
9 WinF Fe 0
10 WinF RI -0.39
... with 1,916 more rows

fgl_long %>%
 filter(feature != "RI") %>%
 ggplot(aes(x = type, y = value, fill = feature)) +
 geom_boxplot() +
 facet_wrap(~ feature, scales = "free") +
 theme_minimal() +
 scale_fill_viridis_d() +
 theme(legend.position = "none")

Some of the features are clear
discriminators, e.g., Ba is barely present in
all glass types but Head.

Na Si

Fe K Mg

Al Ba Ca

WinFWinNF Veh Con Tabl Head WinFWinNF Veh Con Tabl Head

WinFWinNF Veh Con Tabl Head WinFWinNF Veh Con Tabl Head WinFWinNF Veh Con Tabl Head

WinFWinNF Veh Con Tabl Head WinFWinNF Veh Con Tabl Head WinFWinNF Veh Con Tabl Head
5.0

7.5

10.0

12.5

15.0

0

1

2

3

4

0

1

2

3

0

2

4

6

70

72

74

1

2

3

0.0

0.1

0.2

0.3

0.4

0.5

12

14

16

type

va
lu

e

Distribution of (some) feature values by glass type

Preprocess the data (some interactions)
To make the feature set more "interesting" we add interactions with RI:

fgl_interact <-
 recipe(type ~ ., data = fgl_wide) %>%
 step_interact(~ all_predictors() * RI) %>%
 step_zv(all_predictors()) %>%
 prep() %>%
 juice()

head(fgl_interact)

A tibble: 6 x 18
RI Na Mg Al Si K Ca Ba Fe type RI_x_Na RI_x_Mg
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <fct> <dbl> <dbl>
1 3.01 13.6 4.49 1.1 71.8 0.06 8.75 0 0 WinF 41.1 13.5
2 -0.39 13.9 3.6 1.36 72.7 0.48 7.83 0 0 WinF -5.42 -1.40
3 -1.82 13.5 3.55 1.54 73.0 0.39 7.78 0 0 WinF -24.6 -6.46
4 -0.340 13.2 3.69 1.29 72.6 0.570 8.22 0 0 WinF -4.49 -1.25
5 -0.580 13.3 3.62 1.24 73.1 0.55 8.07 0 0 WinF -7.70 -2.10
6 -2.04 12.8 3.61 1.62 73.0 0.64 8.07 0 0.26 WinF -26.1 -7.36
... with 6 more variables: RI_x_Al <dbl>, RI_x_Si <dbl>, RI_x_K <dbl>,
RI_x_Ca <dbl>, RI_x_Ba <dbl>, RI_x_Fe <dbl>

Prepare input to glmnet
Before we �t the model, we need to transform the data to outcome and feature matrices.

y <-
 fgl_interact %>%
 pull(type)

x <-
 fgl_interact %>%
 select(-type) %>%
 as.matrix()

Note that y is a one-dimensional factor.

We can estimate the regularized version of
the model using glmnet with family =
"multinomial":

fit <- cv.glmnet(
 x = x,
 y = y,
 family = "multinomial"
)

and plot the cross-validation results using
plot

plot(fit)

-10 -8 -6 -4 -2

2.
0

2.
5

3.
0

Log(λ)

M
ul

tin
om

ia
l D

ev
ia

nc
e

13 13 13 12 10 9 9 9 9 9 7 7 6 4 3 2 1 0 0

Cross-validation using glmnet

Multiclass prediction
The following code chunk extracts the predicted class and predicted probabilities pf belonging
to each class

class <-
 fit %>%
 predict(newx = x, s = "lambda.1se", type = "class")

prob <-
 fit %>%
 predict(newx = x, s = "lambda.1se", type = "response") %>%
 as_tibble()

Maximum probability rule
We can rearrange class and prob as a nice tibble:

fgl_pred <-
 fgl_wide %>%
 select(type) %>%
 mutate(
 class = class[,1],
 class = factor(class, levels = levels(type))
) %>%
 bind_cols(prob)

Predicted class is determined using the maximum probability rule.

fgl_pred %>% sample_n(5)

A tibble: 5 x 8
type class WinF.1 WinNF.1 Veh.1 Con.1 Tabl.1 Head.1
<fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Veh WinF 0.417 0.417 0.0915 0.0283 0.0238 0.0225
2 WinNF WinF 0.483 0.349 0.0898 0.0201 0.0352 0.0225
3 Head Con 0.131 0.297 0.102 0.374 0.0132 0.0824
4 WinNF WinNF 0.0229 0.899 0.0170 0.0508 0.00268 0.00780
5 WinNF WinNF 0.319 0.528 0.0841 0.0302 0.0175 0.0217

Multiclass confusion matrix
We can print the multiclass confusion matrix using the conf_mat() function (from
{yardstick}):

fgl_pred %>%
 conf_mat(type, class)

Truth
Prediction WinF WinNF Veh Con Tabl Head
WinF 53 18 8 0 0 1
WinNF 17 58 9 9 6 2
Veh 0 0 0 0 0 0
Con 0 0 0 3 0 1
Tabl 0 0 0 0 1 0
Head 0 0 0 1 2 25

For example, our model correctly classi�ed observations as WinF out of all predicted WinF (
 precision rate.)

On the other hand, the model correctly predicted WinFout of the number of actual WinF, ,
which is .

54
54/80 = 67.5%

54 64
54/70 = 77.1%

A one-vs-all approach is often taken to
calculate multiple ROC curves.

We can plot multiclass ROC curves using
the roc_curve function (from
{yardstick}):

fgl_pred %>%
 roc_curve(type, WinF.1:Head.1) %>%
 autoplot()

where WinF.1:Head.1 are the model's
�tted probabilities.

See how the model fails to distinguish
between Veh and the others, whereas
classifying as Tabl is almost perfect.

Veh WinF WinNF

Con Head Tabl

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

1 - specificity

se
ns

iti
vi

ty

Multiclass ROC curve(s)

Multiclass ROC-AUC
Hand and Till (2001) extend the de�nition to the case of more than two classes by averaging
pairwise comparisons.

Calculating the multiclass AUC value can be done using the roc_auc function from the
{yardstick} function:

fgl_pred %>%
 roc_auc(type, WinF.1:Head.1)

A tibble: 1 x 3
.metric .estimator .estimate
<chr> <chr> <dbl>
1 roc_auc hand_till 0.867

https://link.springer.com/article/10.1023/A:1010920819831

slides::end()slides::end()
 Source code Source code

https://github.com/ml4econ/lecture-notes-2021/tree/master/06-classification

References
Hand, Till (2001). "A Simple Generalisation of the Area Under the ROC Curve for Multiple Class
Classi�cation Problems". Machine Learning. Vol 45, Iss 2, pp 171-186.

Lantz, Brett. Machine Learning with R: Expert techniques for predictive modeling, 3rd Edition (p.
333). Packt Publishing.

Taddy, Matt. Business Data Science: Combining Machine Learning and Economics to Optimize,
Automate, and Accelerate Business Decisions. McGraw-Hill Education.

