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Packages and setup
Use the {pacman} package that automatically loads and installs packages if necessary:

if (!require("pacman")) install.packages("pacman")

pacman::p_load(
  tidyverse,   # for data wrangling and visualization
  knitr,       # for displaying nice tables
  broom,       # for tidying estimation output
  here,        # for referencing folders and files
  glmnet,      # for estimating lasso and ridge
  gamlr,       # for forward stepwise selection
  pls,         # for estimating PCR and PLS
  elasticnet,  # for estimating PCR and PLS
  ggfortify
)

Set a theme for ggplot (Relevant only for the presentation)

theme_set(theme_grey(20))

And set a seed for replication

https://cran.r-project.org/web/packages/pacman/vignettes/Introduction_to_pacman.html


Statistical Learning with Sparsity - The
Lasso and Generalizations (Hastie,
Tibshirani, and Wainwright), (PDF
available online)

Statistics for High-Dimensional Data -
Methods, Theory and Applications
(Buhlmann and van de Geer)

High Dimensional Statistics - A Non-
Asymptotic Viewpoint (Wainwright)

Resources on hige-dimensional statsitics

https://web.stanford.edu/~hastie/StatLearnSparsity/
https://www.springer.com/gp/book/9783642201912
https://www.cambridge.org/core/books/highdimensional-statistics/8A91ECEEC38F46DAB53E9FF8757C7A4E


Outline
Linear regression

Penalized regression

Subset selection

Shrinkage

Dimension Reduction



Linear Regression



Econometrics
In econometrics, we typically assume a "true" linear data generating process (DGP):

where  is the outcome variable,  is a set of explanatory or control variables (+
interactions, polynomials, etc.), and  is the regression error.

sample : 

yi = β0 +
p

∑
j=1

xijβj + εi

yi xij, … ,xip
εi

{(x1, … ,xp, yi)}ni=1



Estimation
Ordinary least squares minimizes

The emphasis here is on in-sample �t (minimize residual sum of squares).

Typical work�ow:

impose identifying assumptions (causal claims).
estimate  using the entire sample.
assume a random sample from a larger population.
hypothesis testing.

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

β0, … ,βp



Supervised Learning
Consider the following linear data generating process (DGP):

where  is the predicted (response) variable,  is a set of "features", and  is the
irreducible error.

Training set : 
Test set : 

Typical assumptions: (1) independent observations; (2) stable DGP across training
and test sets.

Our object of interest is , predicting unseen data.

yi = β0 +
p

∑
j=1

xijβj + εi

yi xi1, … ,xip εi

{(x1i, … ,xip, yi)}ni=1
{(x1i, … ,xip, yi)}mi=n+1

ŷ i



D�erent objective, di�erent approach
To illustrate how these two approaches (estimation vs. prediction) differ, consider the
following data generating process1:

where  and .

Next, suppose you get a sample of size  and use it to estimate the model and get (standard
errors in parentheses):

Given a new unseen  and the output above, how would you predict ?

yi = β0 + β1xi + εi, εi ∼ N(0,σ2)

β0 = 0 β1 = 2

N

yi = 0.0 + 2.0 × xi + ε̂ i

(0.2) (10.0)

x0 y0

[1] Adapted from Susan Athey's lecture.



Standard errors and prediction accuracy
OLS is lexicographic in the sense that it �rst ensure unbiasedness, then ef�ciency.

OLS is unbiased, hence you would be right on average, but. Is that what we want?

If your estimated coef�cient is noisy (high std. error), so will be your prediction (high
variability).

Bias-variance trade off again.

Prediction is about balancing bias and variance.

NOTE: in multivariate regression, things are more complicated due to the correlation structure
of the 's.x



Illustration: Browse data
In this lecture, we will use Matt Taddy's browser dataset (available in our repo) which contains
web browsing logs for 10,000 people. Taddy has extracted a year’s worth of browser logs for
the 1000 most heavily traf�cked websites. Each browser in the sample spent at least $1 online
in the same year.

The goal of estimation: predict spending from browser history:

where  is a vector site-visit percentage. This model can be used to segment expected
user budget as a function of browser history.

log(spendi) = β0 + β ′visitsi + εi, for i = 1, … ,n

visitsi



Load data
In this lecture we will only use a sample from the browser dataset: 250 websites and 1000
users.

browser <- here("05-regression-regularization/data","browser-all.csv") %>% 
  read_csv()

Log spending by the �rst user and the fraction of times she spent on the �rst 4 websites:

browser[6, 1:5]

## # A tibble: 1 x 5
##   log_spend `123greetings.com` `204.95.60.12` `2o7.net` `65.115.67.11`
##       <dbl>              <dbl>          <dbl>     <dbl>          <dbl>
## 1      7.74                  0         0.0483    0.0483         0.0322

NOTE: The design matrix in this case is sparse.



Data to matrices
We will soon see that it is useful to transform the data to response and features vector and
matrix, respectively:

browser_mat <- browser %>% 
  as.matrix()

Y_browser <- browser_mat[, 1]     # response
X_browser <- browser_mat[, 2:201] # features



OLS results
Estimate the model using lm()

lm_fit <- lm(log_spend ~ ., data = browser)

Show estimation output, sorted by -values

lm_fit %>% 
  tidy() %>% 
  arrange(p.value) %>% 
  head(3) %>% 
  kable(format = "html", digits = 2)

term estimate std.error statistic p.value
1.86 0.25 7.54 0

staples.com 1.33 0.22 5.91 0
victoriassecret.com 1.45 0.25 5.91 0

p

bizrate. com − o01



Model perfoemance
What is the training-set MSE?

lm_fit %>% 
  augment() %>%
  summarise(mse = mean((log_spend - .fitted)^2)) %>% 
  kable(format = "html", digits = 3)

mse
2.075

This is clearly an underestimate of the test set MSE.



Penalized linear regression



Estimation
Penalized (or regularized) sum of squares solves

where  is a penalty function that measures the expressiveness of the model.

As the number of features grows, linear models become more expressive.

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

 subject to R(β) ≤ t

R(⋅)



Notation: Norms
Suppose  is a  vector with typical element .

The -norm is de�ned as , i.e., the number of non-zero elements in .

The -norm is de�ned as .

The -norm is de�ned as , i.e., Euclidean norm.

β p × 1 βi

ℓ0 ||β||0 = ∑p

j=1 1{βj≠0} β

ℓ1 ||β||1 = ∑p

j=1 |βj|

ℓ2 ||β||2 = (∑p
j=1 |βj|

2)
1
2



Commonly used penaltiy functions
It is often convenient to rewrite the regularization problem in the Lagrangian form:

NOTE: There is one-to-one correspondence between  and .

Method
OLS 0
Subset selection
Lasso
Ridge
Elastic Net*

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

+ λR(β)

λ t

R(β)

∥β∥0

∥β∥1

∥β∥2
2

α∥β∥1 + (1 − α)∥β∥2
2

[*] Will not be covered in this lecture. Essentially, a fancy name for combining ridge and lasso.



Best subset selection



Our goal

In words: select the best model according to some statistical criteria, among all possible
combination of  feature or less.

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

 subject to ∥β∥0 ≤ t

t



Best subset selection algorithm
�. For 

1.1 Fit all models that contain exactly  predictors. If , the forecast is the unconditional
mean.

1.2 Pick the best (e.g, highest ) among these models, and denote it by .

�. Optimize over  using cross-validation (or other criteria)

Issues:

�. The algorithm is very slow: at each step we deal with  models ("N-P complete".)
�. The prediction is highly unstable: the subsets of variables in  and  can be very

different from each other, leading to high variance (the best subset of  need not
include any of the variables in best subset of .)

k = 0, 1, … , p

k k = 0

R2 Mk

{M0, … ,Mp}

( )pk
M10 M11

M3

M2



Faster subset selection algorithms
Instead of estimating all possible combinations, follow a particular path of models:

Forward stepwise selection: start simple and expand (feasible even if )

Backward stepwise selection: start with the full model and drop features (not
recommended)

p > n



Forward stepwise algorithm
�. Let  denote the null model, which contains just an intercept.

�. For 

2.1 Consider all  models that augment the predictors in  with one additional
predictor.

2.2 Choose the best among these  models, and call it  Here best is de�ned as
having highest 

�. Select a single best model from among  using cross-validation.

This is our �rst example of a greedy algorithm: a making the locally optimal
selection at each stage with the intent of �nding a global optimum.

M0

k = 0, … , p − 1 :

p − k Mk

p − k Mk+1.
R2

M0, … ,Mp



{gamlr} is an R package that enables you,
among other things, to estimate a forward
stepwise regression model.

The �gure on the right shows the value of
the coef�cients along the forward
stepwise selection path.

Notice how the jagged are the solution
paths. This discontinuity is the cause for
instability in subset selection algorithms.
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Stepwise using gamlr

fit_step <- gamlr(X_browser, Y_browser, gamma=Inf, l
plot(fit_step, df=FALSE, select=FALSE)

https://github.com/TaddyLab/gamlr


Shrinkage



Prerequisite: centering and scaling
In what follows, we assume that each feature is centered and scaled to have mean zero and
unit variance, as follows:

where  and  are the estimated mean and standard deviation of  estimated over the
training set.

NOTE: This is not important when using OLS (why?)

, for j = 1, 2, … , p
xij − μ̂i

σ̂i

μ̂i σ̂i xi



The ridge regression
Ridge regression was introduced into the statistics literature by Hoerl and Kennard (1970).

The optimization problem:

or in a budget constraint form:

Ridge puts a "budget constraint" on the sum of squared betas. This constraint incorporate the
cost of being "too far away" from the null hypothesis of  (what if this assumption is
wrong?)

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

+ λ∥β∥2
2

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

 subject to ∥β∥2
2 ≤ t

βj = 0



Contours of the error and constraint
functions for ridge regression. The solid
blue area is the constraint region, 

 while the red ellipses are the
contours of the RSS and  is the OLS
estimator.

Source: James et al. (2017)

Illistration of ridge in 2-D

β2
1 + β2

2 ≤ t,

β̂

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html


The solution
The problem in matrix notation:

The ridge estimator is given by

NOTE: We can have a solution even if  is not of full rank (e.g., due to multicollinearity) since 
 is non-singular (since .)

min
β

(y − Xβ)′(y − Xβ) + λβ′β

β̂
R

= (X′X + λI)
−1

X′y

X
X′X + λI λ > 0



Bayesian interpretaion of ridge
Consider the regression

where we assume that  is known.

Suppose we put an independent prior on each 

Then, the posterior mean for  is

Hence, .

yi ∼ N (x′
iβ,σ2)

σ

βj

βj ∼ N (0, τ 2)

β

β̂posterior = (X′X + 1)
−1

X′y
σ2

τ 2

λ = σ2

τ 2



The {glmnet} R package enables you to
estimate ridge regression, along with its
path for .

(Note that for estimating the ridge, we
need to set alpha, the elastic net
parameter to 0.)

fit_ridge <- glmnet(
  x = X_browser,
  y = Y_browser,
  alpha = 0
)
plot(fit_ridge, xvar = "lambda")

The �gure on the right shows the ridge
regularization path, i.e., the values of the -4 -2 0 2 4
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https://web.stanford.edu/~hastie/glmnet/glmnet_alpha.html


The function cv.glmnet() automates cross
validation for the ridge regression.

Note that you can change the default
number of folds (10) by setting the nfolds
argument.

Left dotted vertical line:  with min
MSE
Right dotted vertical line: the biggest 
with MSE no more than one SE away
from the minimum
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cv_ridge <- cv.glmnet(x = X_browser, y = Y_browser, 
plot(cv_ridge)
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The lasso
Lasso (least absolute shrinkage and selection operator) was introduced by Tibshirani (1996).
The optimization problem:

Lasso puts a "budget constraint" on the sum of absolute 's.

Unlike ridge, the lasso penalty is linear (moving from 1 to 2 is the same as moving from 101 to
102.)

A great advantage of the lasso is that performs model selection - it zeros out most of the 's in
the model (the solution is sparse.)

Any penalty that involves the  norm will do this.

min
β0,β

N

∑
i=1

(yi − β0 −
p

∑
j=1

xijβj)
2

+ λ∥β∥1

β

β

ℓ1



Contours of the error and constraint
functions for lasso (left) and ridge (right).
The solid blue areas are the constraint
regions,  and ,
while the red ellipses are the contours of
the RSS and  is the OLS estimator.

Source: James et al. (2017)

Lasso vs. ridge

β2
1 + β2

2 ≤ t, |β1| + |β2| ≤ t

β̂

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html


Pierre Ablin
@PierreAblin

Illustration of the Lasso and its path in 2D: for t small 
enough, the solution is sparse!

GIF

https://twitter.com/PierreAblin?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1107625298936451073%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A5391%2F05-regression-regularization.html
https://twitter.com/PierreAblin?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1107625298936451073%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A5391%2F05-regression-regularization.html
https://twitter.com/PierreAblin/status/1107625298936451073?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1107625298936451073%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A5391%2F05-regression-regularization.html


Bayesian interpretation of lasso
The prior distribution of  under lasso is the double exponential (Laplace) with density 

, where . The posterior mode is equal to the lasso solution

On the left, normal prior (ridge). On the right, Laplace prior (lasso):

Source: James et al. (2017)

β

1/2τ exp(−|β|/τ) τ = 1/λ

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html


The glmnet() function with alpha = 1 (the
default) estimates the entire lasso
regularization path.

fit_lasso <- glmnet(
  x = X_browser,
  y = Y_browser,
  alpha = 1
)
plot(fit_lasso, xvar = "lambda")
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cv_lasso <- cv.glmnet(x = X_browser, y = Y_browser, 
plot(cv_lasso, xvar = "lambda")

λ



Using s = lambda.min:

coef(cv_lasso, s = "lambda.min") %>%
  tidy() %>%
  as_tibble()

## # A tibble: 72 x 3
##    row             column    value
##    <chr>           <chr>     <dbl>
##  1 (Intercept)     1       6.02   
##  2 65.115.67.11    1       0.00247
##  3 about.com       1      -0.0683 
##  4 active.com      1       0.0581 
##  5 adoutput.com    1      -0.0305 
##  6 adrevolver.com  1      -0.0352 
##  7 adserver.com    1       0.0156 
##  8 adsonar.com     1       0.0249 
##  9 advertising.com 1      -0.0104 
## 10 ajc.com         1      -0.0664 
## # ... with 62 more rows

Using s = lamda.1se:

coef(cv_lasso, s = "lambda.1se") %>%
  tidy() %>%
  as_tibble()

## # A tibble: 26 x 3
##    row              column    value
##    <chr>            <chr>     <dbl>
##  1 (Intercept)      1       6.04   
##  2 adrevolver.com   1      -0.00384
##  3 amazon.com       1       0.0749 
##  4 atomz.com        1       0.165  
##  5 azjmp.com        1      -0.168  
##  6 bestbuy.com      1       0.0906 
##  7 cheaptickets.com 1       0.306  
##  8 checkm8.com      1      -0.0912 
##  9 circuitcity.com  1       0.146  
## 10 citysearch.com   1       0.615  
## # ... with 16 more rows

Which features were selected?



A note about shrinkage
Assume that  and  is an  orthonormal matrix with unit vectors and that we are
estimating a regression without an intercept.

Under these assumptions, OLS �nds  that minimize . The solution is 

 (that is, a perfect �t, .)

Similarly, ridge and lasso estimates take the form

and best-subset selection drops all variables with coef�cients smaller than the  largest.

n = p X n × p

β1, … ,βp ∑p
j=1 (yj − βj)

2

β̂
OLS
j = yj R2 = 1

β̂
Ridge

j = , β̂
Lasso

j =

⎧⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪⎩

β̂
OLS

− λ/2  if β̂
OLS

> λ/2

β̂
OLS

+ λ/2  if β̂
OLS

< −λ/2

0  if  ∣
∣β̂

OLS∣
∣ ≤ λ/2

β̂
OLS

(1 + λ)

tth



Shrinkage and its consequences for econometric analysis
Ridge shrinks proportionally, whereas lasso shrinks by a similar amount, and suf�ciently small
coef�cients are shrunken all the way to zero. The lasso type of shrinkage is called "soft-
thresholding."

Source: James et al. (2017)

Main takeaway: We can't just use ridge/lasso coef�cients in subsequent econometric analysis
(unless you're a Bayesian...)

http://faculty.marshall.usc.edu/gareth-james/ISL/index.html


Dimensionality reduction



A di�erent approach
MAIN IDEA: Instead of selecting and/or shrinking , try to �nd  linear combinations of the 
's, such that  and use them to predict .

β M x

M < p y



Motivating example
Consider the following regression model:

next, de�ne a new variable, , as a linear combination of :

for some constants  and . This "factor" is a lower dimension representation of the feature
space (one variable instead of two.)

According to the dimension reduction approach, it might be the case that

(estimated by, say, OLS) would provide better predictions.

yi = β1xi1 + β2xi2 + εi

fi xi1,xi2

fi = λ1xi1 + λ2xi2

λ1 λ2

ŷ i = α̂fi



How does this relate to penalized regression?
Since

dimension reduction can be viewed as a method that puts a constraint on the estimated 's,
i.e.,

where

The main challenges here:

�. How to choose (estimate) , ?
�. How many factors to use? (in this case, since ,  is at most 2.)

ŷ i = α̂fi = α̂λ1xi1 + α̂λ2xi2,

β

yi = β∗
1xi1 + β∗

2xi2 + εi

β∗
1 = αλ1 and β∗

2 = αλ2

λ1 λ2

p = 2 M



The general case
Let  represent  linear combinations of the features , such that

The linear model is given by

where , and is estimated by OLS.

The main issue is estimating and selecting the number of factors in a way that improves
prediction accuracy (i.e., reduce variance with respect to OLS.)

f1, f2, … , fp p x1,x2, … ,xp

fim = λm1x1i + … + λmpxip, for m = 1, … , p

yi = α0 +
M

∑
m=1

αmfim + εi, for i = 1, … ,N

M < p



Principal components regression (PCR)
Let  and  denote a vector of features and scalars,
respectively. Principal component analysis (PCA) amounts to:

(1) Find a linear combinations  of the elements of  that maximizes its variance.

(2) Next, �nd a linear combination  of the elements of , uncorrelated with  having
maximum variance.

 Finally, �nd a linear combination  of the elements of , uncorrelated with 
 having maximum variance.

 is the  principal component (PC), and  is the vector of coef�cients or
loadings for the  PC.

x = (x1, … ,xp) λ1 = (λk1, … ,λkp)

λ1 x

λ2 x λ′
1
x

⋮

(p) λp x

λ′
1x, … , λ′

p−11x

λ′
k
x kth λk

kth



Illustration in 2-D

Source

https://stats.stackexchange.com/questions/134282/relationship-between-svd-and-pca-how-to-use-svd-to-perform-pca


Illustration: NBC TV pilots data
To illustrate, we will use Matt Taddy's NBC pilots dataset that include survey responses for
focus groups on TV show pilots as well as the �rst year of ratings results.

Our objective: predict viewer interest from pilot surveys, thus helping the studios to make
better programming decisions.

The survey data include 6241 views and 20 questions for 40 shows.

PE is our outcome of interest. It measures viewers engagement with the show which is
reported on a 0 (no attention) to 100 (fully engaged) scale.



Read shows dataset
shows includes data on 40 TV shows.

shows <- here("05-regression-regularization/data", "nbc_showdetails.csv") %>% 
  read_csv()

head(shows)

## # A tibble: 6 x 6
##   Show                               Network    PE   GRP Genre           Duration
##   <chr>                              <chr>   <dbl> <dbl> <chr>              <dbl>
## 1 Living with Ed                     HGTV     54   151   Reality               30
## 2 Monarch Cove                       LIFE     64.6 376.  Drama/Adventure       60
## 3 Top Chef                           BRAVO    78.6 808.  Reality               60
## 4 Iron Chef America                  FOOD     62.6  17.3 Reality               30
## 5 Trading Spaces: All Stars          TLC      56    44.1 Reality               60
## 6 Lisa Williams: Life Among the Dead LIFE     56.2 383.  Reality               60



Read survey results dataset
The survey dataset includes 6241 views and 20 questions for 40 shows.

survey <- here("05-regression-regularization/data", "nbc_pilotsurvey.csv") %>% 
  read_csv()

head(survey)

## # A tibble: 6 x 22
##   Viewer Show  Q1_Attentive Q1_Excited Q1_Happy Q1_Engaged Q1_Curious Q1_Motivated
##    <dbl> <chr>        <dbl>      <dbl>    <dbl>      <dbl>      <dbl>        <dbl>
## 1     71 Iron~            3          4        4          3          5            4
## 2     71 Trad~            4          4        3          4          5            2
## 3     71 Hous~            4          4        4          5          5            3
## 4     71 What~            4          3        3          3          4            2
## 5     71 Amer~            4          4        3          4          4            4
## 6     73 Next             2          4        2          4          2            3
## # ... with 14 more variables: Q1_Comforted <dbl>, Q1_Annoyed <dbl>,
## #   Q1_Indifferent <dbl>, Q2_Relatable <dbl>, Q2_Funny <dbl>, Q2_Confusing <dbl>,
## #   Q2_Predictable <dbl>, Q2_Entertaining <dbl>, Q2_Fantasy <dbl>,
## #   Q2_Original <dbl>, Q2_Believable <dbl>, Q2_Boring <dbl>, Q2_Dramatic <dbl>,
## #   Q2_Suspenseful <dbl>



Aggregate survey data
We now aggregate viewer answers by show (we will use mean an the aggregating function)

survey_mean <- survey %>% 
  select(-Viewer) %>% 
  group_by(Show) %>% 
  summarise_all(list(mean)) 

head(survey_mean)

## # A tibble: 6 x 21
##   Show  Q1_Attentive Q1_Excited Q1_Happy Q1_Engaged Q1_Curious Q1_Motivated
##   <chr>        <dbl>      <dbl>    <dbl>      <dbl>      <dbl>        <dbl>
## 1 30 R~         3.69       3.47     3.65       3.74       3.58         2.96
## 2 Amer~         3.84       3.69     3.58       3.84       3.71         3.32
## 3 Amer~         3.67       3.50     3.46       3.58       3.71         3.01
## 4 Bones         4.12       3.71     3.42       4.06       4.15         3.29
## 5 Clos~         3.80       3.32     3.16       3.83       3.73         3.18
## 6 Cold~         4.05       3.53     3.15       3.91       3.96         3.06
## # ... with 14 more variables: Q1_Comforted <dbl>, Q1_Annoyed <dbl>,
## #   Q1_Indifferent <dbl>, Q2_Relatable <dbl>, Q2_Funny <dbl>, Q2_Confusing <dbl>,
## #   Q2_Predictable <dbl>, Q2_Entertaining <dbl>, Q2_Fantasy <dbl>,
## #   Q2_Original <dbl>, Q2_Believable <dbl>, Q2_Boring <dbl>, Q2_Dramatic <dbl>,
## #   Q2_Suspenseful <dbl>



Join shows and survey to a single tibble
We now generate a tibble that holds PE and the mean survey answers, as well as Genre and
Show.

df_join <- shows %>% 
  left_join(survey_mean) %>% 
  select(PE, starts_with("Q"), Genre, Show)

head(df_join)

## # A tibble: 6 x 23
##      PE Q1_Attentive Q1_Excited Q1_Happy Q1_Engaged Q1_Curious Q1_Motivated
##   <dbl>        <dbl>      <dbl>    <dbl>      <dbl>      <dbl>        <dbl>
## 1  54           3.89       3.78     3.93       3.87       3.80         3.61
## 2  64.6         4.05       3.86     3.83       3.88       4            3.94
## 3  78.6         3.85       3.60     3.63       3.77       3.86         3.20
## 4  62.6         3.91       3.69     3.61       3.85       3.94         3.33
## 5  56           3.81       3.54     3.51       3.78       3.91         3.29
## 6  56.2         3.72       3.65     3.55       3.66       3.76         3.57
## # ... with 16 more variables: Q1_Comforted <dbl>, Q1_Annoyed <dbl>,
## #   Q1_Indifferent <dbl>, Q2_Relatable <dbl>, Q2_Funny <dbl>, Q2_Confusing <dbl>,
## #   Q2_Predictable <dbl>, Q2_Entertaining <dbl>, Q2_Fantasy <dbl>,
## #   Q2_Original <dbl>, Q2_Believable <dbl>, Q2_Boring <dbl>, Q2_Dramatic <dbl>,
## #   Q2_Suspenseful <dbl>, Genre <chr>, Show <chr>



Set up the data for PCR
Features matrix (mean survey answers):

X <- df_join %>% 
  select(starts_with("Q")) %>% 
  as.matrix()

Principal components based on X (scaled):

PC <- X %>% 
  prcomp(scale. = TRUE) %>% 
  predict()

where we've used the prcomp() and predict() function to extract the PCs. Setting scale.=TRUE
makes sure that X is scaled prior to running PCA.

Response variable (PE):

Y <- df_join %>% 
  select(PE) %>% 
  as.matrix()



There are a bunch of packages that
perform PCR however, I �nd that the {pls}
package is perhaps the most convenient
choice (other than using {tidymodels}.)

cv_pcr <- pcr(
  Y ~ X,
  scale = TRUE,
  validation = "CV",
  segments = 10       
)
validationplot(cv_pcr)
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Run PCR using the pls package

https://cran.r-project.org/web/packages/pls/index.html


Examining the loadings matrix (also
known as "rotation matrix") can help us to
put label on PCs.

First, we will apply the prcomp() function
again the the feature matrix and store its
output in pca.

pca <- X %>% prcomp(scale. = TRUE)

Then, we can access the rotation matrix
using the $rotation handle (we'll only
look at the �rst two components.)

pca$rotation[, 1:2] %>% round(1)

##                  PC1  PC2
## Q1_Attentive    -0.3  0.0
## Q1_Excited      -0.3  0.1
## Q1_Happy        -0.1  0.2
## Q1_Engaged      -0.3  0.0
## Q1_Curious      -0.3  0.0
## Q1_Motivated    -0.2  0.3
## Q1_Comforted    -0.1  0.4
## Q1_Annoyed       0.2  0.3
## Q1_Indifferent   0.2  0.4
## Q2_Relatable    -0.1  0.3
## Q2_Funny         0.1  0.2
## Q2_Confusing    -0.1  0.3
## Q2_Predictable   0.2  0.3
## Q2_Entertaining -0.3 -0.1
## Q2_Fantasy      -0.1  0.2
## Q2_Original     -0.3  0.1
## Q2_Believable   -0.1  0.1
## Q2_Boring        0.2  0.4
## Q2_Dramatic     -0.2  0.0
## Q2_Suspenseful  -0.3  0.0

Wait, But what is the meaning of these "components"?



And here is the cumulative variance
explained by each PC ("scree plot")

pca %>% 
  tidy("pcs") %>% 
  ggplot(aes(PC, percent)) +
  geom_line() +
  geom_point() +
  labs(
    y = "percent of explaind variance",
    x = "principal component number"
  )
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The following code plots the survey data
based on the �rst two principal
components

pca %>% 
  autoplot(
    data = df_join,
    colour = "Genre",
    size = 3
  ) +
  theme(legend.position = "top")
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Notes about PCR, ridge, and lasso
PCR is an unsupervised method. PCs are extracted without using . (Can we �rst extract PCs
and then proceed to cross validation? Why?)

PCR implicitly assumes that that data are dense, as opposed to lasso where the data is
assumed to be sparse.

(Very wonkish:) Ridge regression can also be interpreted as an algorithm that shrinks PCs
of  having small variance. By contrast, PCR leaves  PCs untouched and removes the
rest.*

y

x M

[*] For further details, see Hastie et al. (2009), Section 3.4.1.



Sparse PCA (SPCA)
Sparse principal component analysis (Zou, Hastie, and, Tibshirani, 2006) employ lasso type
penalties to produce components with many loadings zero.

SPCA can be estimated using the spca() function from the {elasticnet} package

spc <- spca(
  x = X,
  K = 2,
  type = "predictor",
  sparse = "varnum",
  para = c(10, 10)
)

where type="predictor" means that the input is a feature matrix (and not, say, a covariance
matrix), and where the number of PCs K is limited to the �rst two.

Sparsness on the loadings is imposed by sparse=varnum which means that we want to limit the
number of non-zero loading parameters and para = c(4,4) means that we want that each
component will have 4 non-zero loadings.

https://cran.r-project.org/web/packages/elasticnet/index.html


Here are the loadings of the �rst two
sparse PCs based on the spca() algorithm:

spc$loadings %>% round(1)

We can now proceeds to PCR by tuning K
and or para using cross-validation (not in
this lecture.)

##                  PC1  PC2
## Q1_Attentive    -0.3  0.0
## Q1_Excited      -0.3  0.0
## Q1_Happy         0.0  0.0
## Q1_Engaged      -0.2  0.0
## Q1_Curious       0.0  0.0
## Q1_Motivated    -0.4  0.0
## Q1_Comforted    -0.1  0.3
## Q1_Annoyed       0.0  0.4
## Q1_Indifferent   0.0  0.5
## Q2_Relatable    -0.2  0.2
## Q2_Funny         0.0  0.2
## Q2_Confusing     0.0  0.0
## Q2_Predictable   0.0  0.4
## Q2_Entertaining  0.0  0.0
## Q2_Fantasy      -0.3  0.2
## Q2_Original     -0.2  0.0
## Q2_Believable    0.0  0.0
## Q2_Boring        0.0  0.4
## Q2_Dramatic     -0.2 -0.1
## Q2_Suspenseful  -0.7 -0.1

SPCA results



PCR-lasso
Taddy (2019) suggests that instead of tuning the number of principal components, we could try
to tune their number using lasso:

min
α0,α

N

∑
i=1

(yi − α0 −
p

∑
j=1

f̂ ijαj)
2

+ λ∥α∥1



Tune each method using cross-validation
We will now compare 3 methods:

�. PCR-lasso for  on .
�. Lasso for  on .
�. PCR-lasso for  onto both  and .

lasso_pcr  <- cv.glmnet(x = PC, y = Y, nfold = 20)
lasso_x    <- cv.glmnet(x = X , y = Y, nfold = 20)
lasso_pcrx <- cv.glmnet(x = cbind(X, PC) , y = Y, nfold = 20)

(Which of the above is preferred depends on the application.)

y f

y x

y x f



Plot cross-validation results
par(mfrow=c(1,3))
plot(lasso_pcr, sub = "PCR")  
plot(lasso_x, sub = "Lasso")  
plot(lasso_pcrx, sub = "PCR-LAsso")
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Partial least squares (PLS)
In PCR, PCs are extracted in an unsupervised way - we don't use information on  during
the process.

by contrast, partial least squares (PLS) extracts factors in a supervised way.

In theory, PLS should have an advantage over PCR, it might pick-up features that are highly
correlated with  that PCR would drop.

In practice, when it comes to prediction, there is little difference in most applications.

y

y



The PLS algorithm
For

(1) Regress  onto each  independently, i.e.,

and store .

(2) Use the estimated vector of coef�cients  to construct a new component 
, which is a linear combination of the s:

(3) De�ne the residuals from (1) as a new set of features, and proceed to (2) and estimate the
second component, .

(4) Continue until you reach the minimum of  or .

y xj

yi = ϕ1jxi,j + εij, for j = 1, … , p

ϕ11, … ,ϕ1p

ϕ̂1 = (ϕ11, … ,ϕ1p)
vi1 x

vi1 = ϕ̂1
′
xi

vi2 = ϕ̂2
′
xi

p n



We're no ready to estimate PLS using, wait
for it..., the {pls} package!

cv_pls <- plsr(
  Y ~ X,
  scale = TRUE,
  validation = "CV",
  segments = 10       
)
validationplot(cv_pls)
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Run PLS using the pls package

https://cran.r-project.org/web/packages/pls/index.html


Summary
"Despite its simplicity, the linear model has distinct advantages in terms of its
interpretability and often shows good predictive performance." (Hastie and Tibshirani)

Subset selection is slow, unstable, and infeasible when  is large.

Ridge provides is fast, works when , provides good predictions, but is hard to interpret
(keeps all features in.)

Lasso is fast, works when , provides good predictions, and performs variable
selection.

Ridge and lasso shrink the parameters of the model, thus, can't be used out-of-the-box for
econometric analysis

Despite their advantages, linear models need lots of bookkeeping (and memory and
computing power) when it comes to explicitly adding non-linearities, interactions, etc.

p

p > n

p > n



slides::end()slides::end()
 Source code Source code

https://github.com/ml4econ/notes-spring2021/tree/master/05-regression-regularization
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