
03 - Reproducibility and Version Control
ml4econ, HUJI 2021
Itamar Caspi
March 21, 2021 (updated: 2021-04-01)

Replicating this Presentation
R packages used to produce this presentation

library(tidyverse) # for data wrangling and plotting
library(tidymodels) # for modeling the tidy way
library(knitr) # for presenting tables
library(xaringan) # for rendering xaringan presentations

If you are missing a package, run the following command

install.packages("package_name")

Alternatively, you can just use the pacman package that loads and installs packages:

if (!require("pacman")) install.packages("pacman")

pacman::p_load(tidyvers, tidymodels, knitr, xaringan)

https://cran.r-project.org/web/packages/pacman/vignettes/Introduction_to_pacman.html

From Best Practices to Methodology
Best Practice Methodology
High dimensional statistics Machine learning
code annotation Notebooks (R Markdown, Jupyter)
mydoc_1_3_new_final_23.docx Version control
Ready to use tables (xlsx) Generate tables (SQL, dplyr, pandas)
?? Reproducibility
Stata, SAS, EViews R, Python, Julia
work solo Interdisciplinary teams

Outline
1. Reproducibility

2. The Tidyverse

3. Version Control

4. GitHub

RStudio Projects

Reproducibility
Reproducible research allows anyone to generate your exact same results.

To make your project reproducible you'll need to:

document what you did (code + explanations).
name the packages you used (including version numbers).
describe your R environment (R version number, operating system, etc.)

Being in a "reproducible" state-of-mind means putting yourself in the shoes of the
consumers, rather than producers, of your code.

(In "consumers" I also include the future you!)

An Aside: renv
The renv package, by RSudio, helps you create reproducible environments for your R projects.

renv will make your R projects more (From the renv documentation):

Isolated: Installing a new or updated package for one project won’t break your other
projects, and vice versa. That’s because renv gives each project its own private package
library.

Portable: Easily transport your projects from one computer to another, even across
different platforms. renv makes it easy to install the packages your project depends on.

Reproducible: renv records the exact package versions you depend on, and ensures those
exact versions are the ones that get installed wherever you go.

For further details, see this introduction.

https://rstudio.github.io/renv/index.html
https://rstudio.github.io/renv/articles/renv.html

Docker is a virtual computer inside
your computer.

Docker makes sure that anyone
running your code will be able to
perfectly reproduce your results.

Docker solves a major predictability
barrier: replicating your entire
development environment (operating
system, R versions, dependencies, etc.).

For further details, see rOpenSci's
tutorial.

An Aside: Docker

https://www.docker.com/
http://ropenscilabs.github.io/r-docker-tutorial/

RStudio Project Environment
If your R script starts with setwd() or rm(list=ls()) then are doing something wrong!

Instead:

1. Use RStudio's project environment.

2. Go to Tools -> Global Options -> General and set the "Save workspace to .RData on
exit" to NEVER.

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

R Markdown
R Markdown notebooks, by RStudio, are perhaps THE go-to tool for conducting
reproducible research in R.

The process of "knitting" an Rmd �le starts with a clean slate.

An R Markdown �le integrates text, code, links, �gures, tables, and all that is related to your
research project.

R Markdown is perfect for communicating research. One if its main advantages is that an
*.Rmd �le is a "meta-document" that can be exported as a:

document (word, PDF, html, markdown).
presentation (html, beamer, xaringan, power point)
website (blogdown).
book (bookdown).
journal article (pagedown)
dashboard (flexdashboards).

https://bookdown.org/yihui/blogdown/
https://bookdown.org/home/
https://github.com/rstudio/pagedown
https://rmarkdown.rstudio.com/flexdashboard/

The Tidyverse

This is Not a Pipe

Prerequisite: %>% is a pipe
The "pipe" operator %>% introduced in the magrittr package, is deeply rooted in the
tidyverse.

To understand what %>% does, try associating it with the word "then".

Instead of y <- f(x), we type y <- x %>% f(). This might seen cumbersome at �rst, but
consider the following two lines of code:

> y <- h(g(f(x), z))

> y <- x %>% f() %>% g(z) %>% h()

The second line of code should be read as: "take x, then put it through f(), then put the result
through g(. , z), then put the result through h(), and �nally, keep the result in y.

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

Morning Routine

Source: https://twitter.com/andrewheiss/status/1359583543509348356?s=20

https://twitter.com/andrewheiss/status/1359583543509348356?s=20

Base R vs. the Tidyverse
Consider the following data frame:

df <- data.frame(x = rnorm(10),
 y = rnorm(10),
 z = rnorm(10))

Can you guess what the following code chunk does?

df_new <- df[df$x > 0, c("x", "y")]
df_new$xx <- df_new$x^2

How about this one?

df_new <- df %>%
 select(x, y) %>%
 filter(x > 0) %>%
 mutate(xx = x^2)

How to read "piped" code?
df_new <- df %>%
 select(x, y) %>%
 filter(x > 0) %>%
 mutate(xx = x^2)

The above code chunk should be read as:

"generate a new dataframe df_new by taking df, then select x and y, then �lter rows
where x is positive, then mutate a new variable xx = x^2"

Pros & cons
Following a "tidy" approach makes your code more readable more reproducible.

I believe that there is a growing consensus in the #rstats community that we should learn
the tidyverse �rst.

Nevertheless, note that the tidyverse is "Utopian" in the sense that it strives toward
perfection, and thus keeps changing. By contrast, base R was built to last.

As usual, being pro�cient in both (base R and the tidyverse) will get you far...

⇒

http://varianceexplained.org/r/teach-tidyverse/

The Tidyverse

Tidyverse Packages
Which packages come with tidyverse?

tidyverse_packages()

[1] "broom" "cli" "crayon" "dbplyr" "dplyr" "forcats"
[7] "ggplot2" "haven" "hms" "httr" "jsonlite" "lubridate"
[13] "magrittr" "modelr" "pillar" "purrr" "readr" "readxl"
[19] "reprex" "rlang" "rstudioapi" "rvest" "stringr" "tibble"
[25] "tidyr" "xml2" "tidyverse"

Note that not all these packages are loaded by default (e.g., lubrudate.)

We now brie�y introduce one the tidyverse �agships: dplyr.

dplyr: The grammar of data manipulation
dplyr is THE go-to tool for data manipulation

Key "verbs":

filter() - selects observations (rows).
select() - selects variables (columns).
mutate() - generate new variables (columns).
arrange() - sort observations (rows).
summarise() - summary statistics (by groups).

Other useful verbs:

group_by() - groups observations by variables.
sample_n() - sample rows from a table.

And much more (see dplyr documentation)

https://dplyr.tidyverse.org/reference/index.html

The tidymodels package
Tidymodels extends the tidyverse "grammar" philosophy to modelling tasks.

tidymodels::tidymodels_packages()

[1] "broom" "cli" "crayon" "dials" "dplyr"
[6] "ggplot2" "infer" "magrittr" "parsnip" "pillar"
[11] "purrr" "recipes" "rlang" "rsample" "rstudioapi"
[16] "tibble" "tidytext" "tidypredict" "tidyposterior" "tune"
[21] "workflows" "yardstick" "tidymodels"

For further details, visit the tidymodels GitHub repo.

https://github.com/tidymodels/tidymodels

Resources
1. R for Data Science (r4ds) by Garrett Grolemund and Hadley Wickham.

2. Data wrangling and tidying with the “Tidyverse” by Grant McDerrmot.

3. Getting used to R, RStudio, and R Markdown by Chester Ismay and Patrick C. Kennedy.

4. Data Visualiztion: A practical introduction by Kieran Healy.

http://r4ds.had.co.nz/
https://raw.githack.com/uo-ec607/lectures/master/05-tidyverse/05-tidyverse.html
https://rbasics.netlify.com/index.html
https://socviz.co/

Version Control

Version Control

Git is a distributed version control
system.

Huh?!

Sorry. Think of MS Word "track
changes" for code projects.

Git has established itself as the de-
facto standard for version control and
software collaboration.

Git

GitHub is a web-based hosting service
for version control using Git.

OK, OK! Think of "Dropbox" for git
projects. On steroids. And then some.

GitHub is where and how a large share
of open-source projects (e.g., R
packages) are being developed.

GitHub

Resources
1. Happy Git and GitHub for the useR by Jenny Bryan.

2. Version Control with Git(Hub) by Grant McDerrmot.

3. Pro Git.

https://happygitwithr.com/
https://raw.githack.com/uo-ec607/lectures/master/02-git/02-Git.html
https://git-scm.com/book/en/v2

Let's Practice!

Suggested work�ow for starting a new (desktop) R project
RStudio:

1. Open RStudio.
2. File -> New Project -> New Directory -> New Project.
3. Name your project under "Directory name:". Make sure to check "Create git repository".

GitHub Desktop:

1. Open GitHub Desktop.
2. File -> Add local repository.
3. Set "Local path" to your RStudio project's folder.
4. Publish local git repo on GitHub (choose private or public repo).

Suggested work�ow for starting a new RStudio Cloud project
1. Login to RStudio Cloud.
2. Choose workspace (e.g., ml4econ-2020).
3. Click on "New Project" (optional - from GitHub).
4. Set up Git: Tools -> Version Control -> Project Setup -> set "Version Control System" to "Git"

and restart session.
5. Introduce yourself to Git

install.packages("usethis")

library(usethis)

use_git_config(
 scope = "project",
 user.name = "Jane",
 user.email = "jane@example.org"
)

(6. Some extra steps are needed in order to publish and sync this new project with GitHub.)

Suggested Git Work�ow (Optional)
The pull -> stage -> commit -> push work�ow:

1. Open GitHub Desktop.
2. Change "Current repository" to the cloned repo.
3. Click "Fetch origin" and pull any changes made to the GitHub repo.
4. Open your project.
5. Make changes to one or more of your �les.
6. Save.
7. stage or unstage changed �les.
8. write a summary (and description) of your changes.
9. Click "Commit to master".

10. Update remote: Click "Push origin" (Ctrl + P).

Clone and Sync a Remote GitHub Repository (Optional)
Cloning:

1. Open GitHub Desktop.
2. Open the remote repository.
3. Click on "Clone or download".
4. Set the local path of your cloned repo (e.g., "C:/Documents/CLONED_REPO".

Syncing:

1. Open GitHub Desktop.
2. Change "Current repository" to the cloned repo.
3. Click the "Fetch origin" button.
4. Pull any changes made on the remote repo.

Your Mission
1. Open RStudio (or login to RStudio Cloud.)

2. Create your �rst R project.

3. Initiate Git.1

4. Create a new RMarkdown �le.

5. Commit.

1 RStudio automatically generates a .gitignore �le that tells git which �les to ignore (duh!).
Click here for further details on how to con�gure what to ignore.

https://raw.githack.com/uo-ec607/lectures/master/02-git/02-Git.html#57

slides %>% end()slides %>% end()
 Source code Source code

https://github.com/ml4econ/lecture-notes-2021/tree/master/03-reprod-vc

